Solve for x
x = -\frac{28}{11} = -2\frac{6}{11} \approx -2.545454545
Graph
Share
Copied to clipboard
18-3\left(x-4\right)=2\left(-4x+1\right)-6x
Multiply both sides of the equation by 6, the least common multiple of 2,3.
18-3x+12=2\left(-4x+1\right)-6x
Use the distributive property to multiply -3 by x-4.
30-3x=2\left(-4x+1\right)-6x
Add 18 and 12 to get 30.
30-3x=-8x+2-6x
Use the distributive property to multiply 2 by -4x+1.
30-3x=-14x+2
Combine -8x and -6x to get -14x.
30-3x+14x=2
Add 14x to both sides.
30+11x=2
Combine -3x and 14x to get 11x.
11x=2-30
Subtract 30 from both sides.
11x=-28
Subtract 30 from 2 to get -28.
x=\frac{-28}{11}
Divide both sides by 11.
x=-\frac{28}{11}
Fraction \frac{-28}{11} can be rewritten as -\frac{28}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}