Evaluate
\frac{35}{12}\approx 2.916666667
Factor
\frac{5 \cdot 7}{2 ^ {2} \cdot 3} = 2\frac{11}{12} = 2.9166666666666665
Share
Copied to clipboard
3-\frac{4}{7}\left(\frac{9}{16}-\frac{\frac{1}{36}}{-\frac{1}{27}}\right)-\frac{2}{3}\left(-1^{101}\right)
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
3-\frac{4}{7}\left(\frac{9}{16}-\frac{1}{36}\left(-27\right)\right)-\frac{2}{3}\left(-1^{101}\right)
Divide \frac{1}{36} by -\frac{1}{27} by multiplying \frac{1}{36} by the reciprocal of -\frac{1}{27}.
3-\frac{4}{7}\left(\frac{9}{16}-\frac{-27}{36}\right)-\frac{2}{3}\left(-1^{101}\right)
Multiply \frac{1}{36} and -27 to get \frac{-27}{36}.
3-\frac{4}{7}\left(\frac{9}{16}-\left(-\frac{3}{4}\right)\right)-\frac{2}{3}\left(-1^{101}\right)
Reduce the fraction \frac{-27}{36} to lowest terms by extracting and canceling out 9.
3-\frac{4}{7}\left(\frac{9}{16}+\frac{3}{4}\right)-\frac{2}{3}\left(-1^{101}\right)
The opposite of -\frac{3}{4} is \frac{3}{4}.
3-\frac{4}{7}\left(\frac{9}{16}+\frac{12}{16}\right)-\frac{2}{3}\left(-1^{101}\right)
Least common multiple of 16 and 4 is 16. Convert \frac{9}{16} and \frac{3}{4} to fractions with denominator 16.
3-\frac{4}{7}\times \frac{9+12}{16}-\frac{2}{3}\left(-1^{101}\right)
Since \frac{9}{16} and \frac{12}{16} have the same denominator, add them by adding their numerators.
3-\frac{4}{7}\times \frac{21}{16}-\frac{2}{3}\left(-1^{101}\right)
Add 9 and 12 to get 21.
3-\frac{4\times 21}{7\times 16}-\frac{2}{3}\left(-1^{101}\right)
Multiply \frac{4}{7} times \frac{21}{16} by multiplying numerator times numerator and denominator times denominator.
3-\frac{84}{112}-\frac{2}{3}\left(-1^{101}\right)
Do the multiplications in the fraction \frac{4\times 21}{7\times 16}.
3-\frac{3}{4}-\frac{2}{3}\left(-1^{101}\right)
Reduce the fraction \frac{84}{112} to lowest terms by extracting and canceling out 28.
\frac{12}{4}-\frac{3}{4}-\frac{2}{3}\left(-1^{101}\right)
Convert 3 to fraction \frac{12}{4}.
\frac{12-3}{4}-\frac{2}{3}\left(-1^{101}\right)
Since \frac{12}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{4}-\frac{2}{3}\left(-1^{101}\right)
Subtract 3 from 12 to get 9.
\frac{9}{4}-\frac{2}{3}\left(-1\right)
Calculate 1 to the power of 101 and get 1.
\frac{9}{4}+\frac{2}{3}
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.
\frac{27}{12}+\frac{8}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{9}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{27+8}{12}
Since \frac{27}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{35}{12}
Add 27 and 8 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}