Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3-\frac{4\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}
Rationalize the denominator of \frac{4}{3+\sqrt{5}} by multiplying numerator and denominator by 3-\sqrt{5}.
3-\frac{4\left(3-\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{4\left(3-\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
3-\frac{4\left(3-\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
3-\left(3-\sqrt{5}\right)
Cancel out 4 and 4.
3-3-\left(-\sqrt{5}\right)
To find the opposite of 3-\sqrt{5}, find the opposite of each term.
3-3+\sqrt{5}
The opposite of -\sqrt{5} is \sqrt{5}.
\sqrt{5}
Subtract 3 from 3 to get 0.