Verify
true
Share
Copied to clipboard
3-\frac{3\left(-4\right)}{2\times 7}=2\left(-\frac{4}{7}\right)+5
Multiply \frac{3}{2} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
3-\frac{-12}{14}=2\left(-\frac{4}{7}\right)+5
Do the multiplications in the fraction \frac{3\left(-4\right)}{2\times 7}.
3-\left(-\frac{6}{7}\right)=2\left(-\frac{4}{7}\right)+5
Reduce the fraction \frac{-12}{14} to lowest terms by extracting and canceling out 2.
3+\frac{6}{7}=2\left(-\frac{4}{7}\right)+5
The opposite of -\frac{6}{7} is \frac{6}{7}.
\frac{21}{7}+\frac{6}{7}=2\left(-\frac{4}{7}\right)+5
Convert 3 to fraction \frac{21}{7}.
\frac{21+6}{7}=2\left(-\frac{4}{7}\right)+5
Since \frac{21}{7} and \frac{6}{7} have the same denominator, add them by adding their numerators.
\frac{27}{7}=2\left(-\frac{4}{7}\right)+5
Add 21 and 6 to get 27.
\frac{27}{7}=\frac{2\left(-4\right)}{7}+5
Express 2\left(-\frac{4}{7}\right) as a single fraction.
\frac{27}{7}=\frac{-8}{7}+5
Multiply 2 and -4 to get -8.
\frac{27}{7}=-\frac{8}{7}+5
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
\frac{27}{7}=-\frac{8}{7}+\frac{35}{7}
Convert 5 to fraction \frac{35}{7}.
\frac{27}{7}=\frac{-8+35}{7}
Since -\frac{8}{7} and \frac{35}{7} have the same denominator, add them by adding their numerators.
\frac{27}{7}=\frac{27}{7}
Add -8 and 35 to get 27.
\text{true}
Compare \frac{27}{7} and \frac{27}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}