Solve for x
x\geq \frac{13}{4}
Graph
Share
Copied to clipboard
6-\left(2x-5\right)\leq 2x-2
Multiply both sides of the equation by 2. Since 2 is positive, the inequality direction remains the same.
6-2x-\left(-5\right)\leq 2x-2
To find the opposite of 2x-5, find the opposite of each term.
6-2x+5\leq 2x-2
The opposite of -5 is 5.
11-2x\leq 2x-2
Add 6 and 5 to get 11.
11-2x-2x\leq -2
Subtract 2x from both sides.
11-4x\leq -2
Combine -2x and -2x to get -4x.
-4x\leq -2-11
Subtract 11 from both sides.
-4x\leq -13
Subtract 11 from -2 to get -13.
x\geq \frac{-13}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x\geq \frac{13}{4}
Fraction \frac{-13}{-4} can be simplified to \frac{13}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}