Evaluate
\frac{22\sqrt{2}}{3}+6\approx 16.370899457
Factor
\frac{2 {(11 \sqrt{2} + 9)}}{3} = 16.370899457402697
Share
Copied to clipboard
\frac{3\times 3}{3}-\frac{2\sqrt{2}}{3}-9\left(-\frac{1}{3}\right)+2\times 4\sqrt{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{3\times 3-2\sqrt{2}}{3}-9\left(-\frac{1}{3}\right)+2\times 4\sqrt{2}
Since \frac{3\times 3}{3} and \frac{2\sqrt{2}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{9-2\sqrt{2}}{3}-9\left(-\frac{1}{3}\right)+2\times 4\sqrt{2}
Do the multiplications in 3\times 3-2\sqrt{2}.
\frac{9-2\sqrt{2}}{3}-\frac{9\left(-1\right)}{3}+2\times 4\sqrt{2}
Express 9\left(-\frac{1}{3}\right) as a single fraction.
\frac{9-2\sqrt{2}}{3}-\frac{-9}{3}+2\times 4\sqrt{2}
Multiply 9 and -1 to get -9.
\frac{9-2\sqrt{2}}{3}-\left(-3\right)+2\times 4\sqrt{2}
Divide -9 by 3 to get -3.
\frac{9-2\sqrt{2}}{3}+3+2\times 4\sqrt{2}
The opposite of -3 is 3.
\frac{9-2\sqrt{2}}{3}+\frac{3\times 3}{3}+2\times 4\sqrt{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{9-2\sqrt{2}+3\times 3}{3}+2\times 4\sqrt{2}
Since \frac{9-2\sqrt{2}}{3} and \frac{3\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{9-2\sqrt{2}+9}{3}+2\times 4\sqrt{2}
Do the multiplications in 9-2\sqrt{2}+3\times 3.
\frac{18-2\sqrt{2}}{3}+2\times 4\sqrt{2}
Do the calculations in 9-2\sqrt{2}+9.
\frac{18-2\sqrt{2}}{3}+8\sqrt{2}
Multiply 2 and 4 to get 8.
\frac{18-2\sqrt{2}}{3}+\frac{3\times 8\sqrt{2}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8\sqrt{2} times \frac{3}{3}.
\frac{18-2\sqrt{2}+3\times 8\sqrt{2}}{3}
Since \frac{18-2\sqrt{2}}{3} and \frac{3\times 8\sqrt{2}}{3} have the same denominator, add them by adding their numerators.
\frac{18-2\sqrt{2}+24\sqrt{2}}{3}
Do the multiplications in 18-2\sqrt{2}+3\times 8\sqrt{2}.
\frac{18+22\sqrt{2}}{3}
Do the calculations in 18-2\sqrt{2}+24\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}