Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x-2\right)}{x-2}-\frac{1}{x-2}+\frac{x+1}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
\frac{3\left(x-2\right)-1}{x-2}+\frac{x+1}{x+3}
Since \frac{3\left(x-2\right)}{x-2} and \frac{1}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-6-1}{x-2}+\frac{x+1}{x+3}
Do the multiplications in 3\left(x-2\right)-1.
\frac{3x-7}{x-2}+\frac{x+1}{x+3}
Combine like terms in 3x-6-1.
\frac{\left(3x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+3 is \left(x-2\right)\left(x+3\right). Multiply \frac{3x-7}{x-2} times \frac{x+3}{x+3}. Multiply \frac{x+1}{x+3} times \frac{x-2}{x-2}.
\frac{\left(3x-7\right)\left(x+3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Since \frac{\left(3x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)} and \frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+9x-7x-21+x^{2}-2x+x-2}{\left(x-2\right)\left(x+3\right)}
Do the multiplications in \left(3x-7\right)\left(x+3\right)+\left(x+1\right)\left(x-2\right).
\frac{4x^{2}+x-23}{\left(x-2\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x-7x-21+x^{2}-2x+x-2.
\frac{4x^{2}+x-23}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).
\frac{3\left(x-2\right)}{x-2}-\frac{1}{x-2}+\frac{x+1}{x+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-2}{x-2}.
\frac{3\left(x-2\right)-1}{x-2}+\frac{x+1}{x+3}
Since \frac{3\left(x-2\right)}{x-2} and \frac{1}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-6-1}{x-2}+\frac{x+1}{x+3}
Do the multiplications in 3\left(x-2\right)-1.
\frac{3x-7}{x-2}+\frac{x+1}{x+3}
Combine like terms in 3x-6-1.
\frac{\left(3x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+3 is \left(x-2\right)\left(x+3\right). Multiply \frac{3x-7}{x-2} times \frac{x+3}{x+3}. Multiply \frac{x+1}{x+3} times \frac{x-2}{x-2}.
\frac{\left(3x-7\right)\left(x+3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}
Since \frac{\left(3x-7\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)} and \frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+9x-7x-21+x^{2}-2x+x-2}{\left(x-2\right)\left(x+3\right)}
Do the multiplications in \left(3x-7\right)\left(x+3\right)+\left(x+1\right)\left(x-2\right).
\frac{4x^{2}+x-23}{\left(x-2\right)\left(x+3\right)}
Combine like terms in 3x^{2}+9x-7x-21+x^{2}-2x+x-2.
\frac{4x^{2}+x-23}{x^{2}+x-6}
Expand \left(x-2\right)\left(x+3\right).