Evaluate
-\frac{\sqrt{3}}{3}+2\approx 1.422649731
Share
Copied to clipboard
3-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{3+\sqrt{3}}-\frac{1}{3-\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3-\frac{\sqrt{3}}{3}-\frac{1}{3+\sqrt{3}}-\frac{1}{3-\sqrt{3}}
The square of \sqrt{3} is 3.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\frac{1}{3-\sqrt{3}}
Rationalize the denominator of \frac{1}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{3^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{3-\sqrt{3}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{9-3}-\frac{1}{3-\sqrt{3}}
Square 3. Square \sqrt{3}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{1}{3-\sqrt{3}}
Subtract 3 from 9 to get 6.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{9-3}
Square 3. Square \sqrt{3}.
3-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
Subtract 3 from 9 to get 6.
\frac{3\times 3}{3}-\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{3\times 3-\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
Since \frac{3\times 3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{9-\sqrt{3}}{3}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
Do the multiplications in 3\times 3-\sqrt{3}.
\frac{2\left(9-\sqrt{3}\right)}{6}-\frac{3-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{9-\sqrt{3}}{3} times \frac{2}{2}.
\frac{2\left(9-\sqrt{3}\right)-\left(3-\sqrt{3}\right)}{6}-\frac{3+\sqrt{3}}{6}
Since \frac{2\left(9-\sqrt{3}\right)}{6} and \frac{3-\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{18-2\sqrt{3}-3+\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
Do the multiplications in 2\left(9-\sqrt{3}\right)-\left(3-\sqrt{3}\right).
\frac{15-\sqrt{3}}{6}-\frac{3+\sqrt{3}}{6}
Do the calculations in 18-2\sqrt{3}-3+\sqrt{3}.
\frac{15-\sqrt{3}-\left(3+\sqrt{3}\right)}{6}
Since \frac{15-\sqrt{3}}{6} and \frac{3+\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-\sqrt{3}-3-\sqrt{3}}{6}
Do the multiplications in 15-\sqrt{3}-\left(3+\sqrt{3}\right).
\frac{12-2\sqrt{3}}{6}
Do the calculations in 15-\sqrt{3}-3-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}