Solve for x
x=\frac{\left(y-1\right)^{2}}{3}
Solve for y (complex solution)
y=-\sqrt{3x}+1
y=\sqrt{3x}+1
Solve for y
y=-\sqrt{3x}+1
y=\sqrt{3x}+1\text{, }x\geq 0
Graph
Share
Copied to clipboard
3\left(y^{2}-2y+1\right)=9x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
3y^{2}-6y+3=9x
Use the distributive property to multiply 3 by y^{2}-2y+1.
9x=3y^{2}-6y+3
Swap sides so that all variable terms are on the left hand side.
\frac{9x}{9}=\frac{3\left(y-1\right)^{2}}{9}
Divide both sides by 9.
x=\frac{3\left(y-1\right)^{2}}{9}
Dividing by 9 undoes the multiplication by 9.
x=\frac{\left(y-1\right)^{2}}{3}
Divide 3\left(-1+y\right)^{2} by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}