Solve for y
y = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
y=1
Graph
Share
Copied to clipboard
3\left(y^{2}-2y+1\right)=4\left(y-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
3y^{2}-6y+3=4\left(y-1\right)
Use the distributive property to multiply 3 by y^{2}-2y+1.
3y^{2}-6y+3=4y-4
Use the distributive property to multiply 4 by y-1.
3y^{2}-6y+3-4y=-4
Subtract 4y from both sides.
3y^{2}-10y+3=-4
Combine -6y and -4y to get -10y.
3y^{2}-10y+3+4=0
Add 4 to both sides.
3y^{2}-10y+7=0
Add 3 and 4 to get 7.
a+b=-10 ab=3\times 7=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3y^{2}+ay+by+7. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(3y^{2}-7y\right)+\left(-3y+7\right)
Rewrite 3y^{2}-10y+7 as \left(3y^{2}-7y\right)+\left(-3y+7\right).
y\left(3y-7\right)-\left(3y-7\right)
Factor out y in the first and -1 in the second group.
\left(3y-7\right)\left(y-1\right)
Factor out common term 3y-7 by using distributive property.
y=\frac{7}{3} y=1
To find equation solutions, solve 3y-7=0 and y-1=0.
3\left(y^{2}-2y+1\right)=4\left(y-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
3y^{2}-6y+3=4\left(y-1\right)
Use the distributive property to multiply 3 by y^{2}-2y+1.
3y^{2}-6y+3=4y-4
Use the distributive property to multiply 4 by y-1.
3y^{2}-6y+3-4y=-4
Subtract 4y from both sides.
3y^{2}-10y+3=-4
Combine -6y and -4y to get -10y.
3y^{2}-10y+3+4=0
Add 4 to both sides.
3y^{2}-10y+7=0
Add 3 and 4 to get 7.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 7}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 7}}{2\times 3}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-12\times 7}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-10\right)±\sqrt{100-84}}{2\times 3}
Multiply -12 times 7.
y=\frac{-\left(-10\right)±\sqrt{16}}{2\times 3}
Add 100 to -84.
y=\frac{-\left(-10\right)±4}{2\times 3}
Take the square root of 16.
y=\frac{10±4}{2\times 3}
The opposite of -10 is 10.
y=\frac{10±4}{6}
Multiply 2 times 3.
y=\frac{14}{6}
Now solve the equation y=\frac{10±4}{6} when ± is plus. Add 10 to 4.
y=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
y=\frac{6}{6}
Now solve the equation y=\frac{10±4}{6} when ± is minus. Subtract 4 from 10.
y=1
Divide 6 by 6.
y=\frac{7}{3} y=1
The equation is now solved.
3\left(y^{2}-2y+1\right)=4\left(y-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
3y^{2}-6y+3=4\left(y-1\right)
Use the distributive property to multiply 3 by y^{2}-2y+1.
3y^{2}-6y+3=4y-4
Use the distributive property to multiply 4 by y-1.
3y^{2}-6y+3-4y=-4
Subtract 4y from both sides.
3y^{2}-10y+3=-4
Combine -6y and -4y to get -10y.
3y^{2}-10y=-4-3
Subtract 3 from both sides.
3y^{2}-10y=-7
Subtract 3 from -4 to get -7.
\frac{3y^{2}-10y}{3}=-\frac{7}{3}
Divide both sides by 3.
y^{2}-\frac{10}{3}y=-\frac{7}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{10}{3}y+\left(-\frac{5}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{10}{3}y+\frac{25}{9}=-\frac{7}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{10}{3}y+\frac{25}{9}=\frac{4}{9}
Add -\frac{7}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{3}\right)^{2}=\frac{4}{9}
Factor y^{2}-\frac{10}{3}y+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
y-\frac{5}{3}=\frac{2}{3} y-\frac{5}{3}=-\frac{2}{3}
Simplify.
y=\frac{7}{3} y=1
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}