Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-10x+25\right)-75=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75-75=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x=0
Subtract 75 from 75 to get 0.
x\left(3x-30\right)=0
Factor out x.
x=0 x=10
To find equation solutions, solve x=0 and 3x-30=0.
3\left(x^{2}-10x+25\right)-75=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75-75=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x=0
Subtract 75 from 75 to get 0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -30 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±30}{2\times 3}
Take the square root of \left(-30\right)^{2}.
x=\frac{30±30}{2\times 3}
The opposite of -30 is 30.
x=\frac{30±30}{6}
Multiply 2 times 3.
x=\frac{60}{6}
Now solve the equation x=\frac{30±30}{6} when ± is plus. Add 30 to 30.
x=10
Divide 60 by 6.
x=\frac{0}{6}
Now solve the equation x=\frac{30±30}{6} when ± is minus. Subtract 30 from 30.
x=0
Divide 0 by 6.
x=10 x=0
The equation is now solved.
3\left(x^{2}-10x+25\right)-75=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75-75=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x=0
Subtract 75 from 75 to get 0.
\frac{3x^{2}-30x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{30}{3}\right)x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-10x=\frac{0}{3}
Divide -30 by 3.
x^{2}-10x=0
Divide 0 by 3.
x^{2}-10x+\left(-5\right)^{2}=\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=25
Square -5.
\left(x-5\right)^{2}=25
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-5=5 x-5=-5
Simplify.
x=10 x=0
Add 5 to both sides of the equation.