Solve for x
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
x=5
Graph
Share
Copied to clipboard
3\left(x^{2}-10x+25\right)+2\left(x-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75+2\left(x-5\right)=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x+75+2x-10=0
Use the distributive property to multiply 2 by x-5.
3x^{2}-28x+75-10=0
Combine -30x and 2x to get -28x.
3x^{2}-28x+65=0
Subtract 10 from 75 to get 65.
a+b=-28 ab=3\times 65=195
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+65. To find a and b, set up a system to be solved.
-1,-195 -3,-65 -5,-39 -13,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 195.
-1-195=-196 -3-65=-68 -5-39=-44 -13-15=-28
Calculate the sum for each pair.
a=-15 b=-13
The solution is the pair that gives sum -28.
\left(3x^{2}-15x\right)+\left(-13x+65\right)
Rewrite 3x^{2}-28x+65 as \left(3x^{2}-15x\right)+\left(-13x+65\right).
3x\left(x-5\right)-13\left(x-5\right)
Factor out 3x in the first and -13 in the second group.
\left(x-5\right)\left(3x-13\right)
Factor out common term x-5 by using distributive property.
x=5 x=\frac{13}{3}
To find equation solutions, solve x-5=0 and 3x-13=0.
3\left(x^{2}-10x+25\right)+2\left(x-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75+2\left(x-5\right)=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x+75+2x-10=0
Use the distributive property to multiply 2 by x-5.
3x^{2}-28x+75-10=0
Combine -30x and 2x to get -28x.
3x^{2}-28x+65=0
Subtract 10 from 75 to get 65.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 3\times 65}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -28 for b, and 65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 3\times 65}}{2\times 3}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-12\times 65}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-28\right)±\sqrt{784-780}}{2\times 3}
Multiply -12 times 65.
x=\frac{-\left(-28\right)±\sqrt{4}}{2\times 3}
Add 784 to -780.
x=\frac{-\left(-28\right)±2}{2\times 3}
Take the square root of 4.
x=\frac{28±2}{2\times 3}
The opposite of -28 is 28.
x=\frac{28±2}{6}
Multiply 2 times 3.
x=\frac{30}{6}
Now solve the equation x=\frac{28±2}{6} when ± is plus. Add 28 to 2.
x=5
Divide 30 by 6.
x=\frac{26}{6}
Now solve the equation x=\frac{28±2}{6} when ± is minus. Subtract 2 from 28.
x=\frac{13}{3}
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{13}{3}
The equation is now solved.
3\left(x^{2}-10x+25\right)+2\left(x-5\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
3x^{2}-30x+75+2\left(x-5\right)=0
Use the distributive property to multiply 3 by x^{2}-10x+25.
3x^{2}-30x+75+2x-10=0
Use the distributive property to multiply 2 by x-5.
3x^{2}-28x+75-10=0
Combine -30x and 2x to get -28x.
3x^{2}-28x+65=0
Subtract 10 from 75 to get 65.
3x^{2}-28x=-65
Subtract 65 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-28x}{3}=-\frac{65}{3}
Divide both sides by 3.
x^{2}-\frac{28}{3}x=-\frac{65}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{28}{3}x+\left(-\frac{14}{3}\right)^{2}=-\frac{65}{3}+\left(-\frac{14}{3}\right)^{2}
Divide -\frac{28}{3}, the coefficient of the x term, by 2 to get -\frac{14}{3}. Then add the square of -\frac{14}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{3}x+\frac{196}{9}=-\frac{65}{3}+\frac{196}{9}
Square -\frac{14}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{3}x+\frac{196}{9}=\frac{1}{9}
Add -\frac{65}{3} to \frac{196}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{28}{3}x+\frac{196}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{14}{3}=\frac{1}{3} x-\frac{14}{3}=-\frac{1}{3}
Simplify.
x=5 x=\frac{13}{3}
Add \frac{14}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}