Solve for x
x = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Share
Copied to clipboard
3x-9+2\left(4-x\right)=x-5\left(x+3\right)
Use the distributive property to multiply 3 by x-3.
3x-9+8-2x=x-5\left(x+3\right)
Use the distributive property to multiply 2 by 4-x.
3x-1-2x=x-5\left(x+3\right)
Add -9 and 8 to get -1.
x-1=x-5\left(x+3\right)
Combine 3x and -2x to get x.
x-1=x-5x-15
Use the distributive property to multiply -5 by x+3.
x-1=-4x-15
Combine x and -5x to get -4x.
x-1+4x=-15
Add 4x to both sides.
5x-1=-15
Combine x and 4x to get 5x.
5x=-15+1
Add 1 to both sides.
5x=-14
Add -15 and 1 to get -14.
x=\frac{-14}{5}
Divide both sides by 5.
x=-\frac{14}{5}
Fraction \frac{-14}{5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}