Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-4x+4\right)-4=71
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12-4=71
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+8=71
Subtract 4 from 12 to get 8.
3x^{2}-12x+8-71=0
Subtract 71 from both sides.
3x^{2}-12x-63=0
Subtract 71 from 8 to get -63.
x^{2}-4x-21=0
Divide both sides by 3.
a+b=-4 ab=1\left(-21\right)=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-7 b=3
The solution is the pair that gives sum -4.
\left(x^{2}-7x\right)+\left(3x-21\right)
Rewrite x^{2}-4x-21 as \left(x^{2}-7x\right)+\left(3x-21\right).
x\left(x-7\right)+3\left(x-7\right)
Factor out x in the first and 3 in the second group.
\left(x-7\right)\left(x+3\right)
Factor out common term x-7 by using distributive property.
x=7 x=-3
To find equation solutions, solve x-7=0 and x+3=0.
3\left(x^{2}-4x+4\right)-4=71
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12-4=71
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+8=71
Subtract 4 from 12 to get 8.
3x^{2}-12x+8-71=0
Subtract 71 from both sides.
3x^{2}-12x-63=0
Subtract 71 from 8 to get -63.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\left(-63\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -12 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\left(-63\right)}}{2\times 3}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\left(-63\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-12\right)±\sqrt{144+756}}{2\times 3}
Multiply -12 times -63.
x=\frac{-\left(-12\right)±\sqrt{900}}{2\times 3}
Add 144 to 756.
x=\frac{-\left(-12\right)±30}{2\times 3}
Take the square root of 900.
x=\frac{12±30}{2\times 3}
The opposite of -12 is 12.
x=\frac{12±30}{6}
Multiply 2 times 3.
x=\frac{42}{6}
Now solve the equation x=\frac{12±30}{6} when ± is plus. Add 12 to 30.
x=7
Divide 42 by 6.
x=-\frac{18}{6}
Now solve the equation x=\frac{12±30}{6} when ± is minus. Subtract 30 from 12.
x=-3
Divide -18 by 6.
x=7 x=-3
The equation is now solved.
3\left(x^{2}-4x+4\right)-4=71
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
3x^{2}-12x+12-4=71
Use the distributive property to multiply 3 by x^{2}-4x+4.
3x^{2}-12x+8=71
Subtract 4 from 12 to get 8.
3x^{2}-12x=71-8
Subtract 8 from both sides.
3x^{2}-12x=63
Subtract 8 from 71 to get 63.
\frac{3x^{2}-12x}{3}=\frac{63}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{12}{3}\right)x=\frac{63}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-4x=\frac{63}{3}
Divide -12 by 3.
x^{2}-4x=21
Divide 63 by 3.
x^{2}-4x+\left(-2\right)^{2}=21+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=21+4
Square -2.
x^{2}-4x+4=25
Add 21 to 4.
\left(x-2\right)^{2}=25
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-2=5 x-2=-5
Simplify.
x=7 x=-3
Add 2 to both sides of the equation.