Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
3x-6+4x=2x-4-8
Use the distributive property to multiply 3 by x-2.
7x-6=2x-4-8
Combine 3x and 4x to get 7x.
7x-6=2x-12
Subtract 8 from -4 to get -12.
7x-6-2x=-12
Subtract 2x from both sides.
5x-6=-12
Combine 7x and -2x to get 5x.
5x=-12+6
Add 6 to both sides.
5x=-6
Add -12 and 6 to get -6.
x=\frac{-6}{5}
Divide both sides by 5.
x=-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}