Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
3x-3-2\left(2+x\right)=3x-4
Use the distributive property to multiply 3 by x-1.
3x-3-4-2x=3x-4
Use the distributive property to multiply -2 by 2+x.
3x-7-2x=3x-4
Subtract 4 from -3 to get -7.
x-7=3x-4
Combine 3x and -2x to get x.
x-7-3x=-4
Subtract 3x from both sides.
-2x-7=-4
Combine x and -3x to get -2x.
-2x=-4+7
Add 7 to both sides.
-2x=3
Add -4 and 7 to get 3.
x=\frac{3}{-2}
Divide both sides by -2.
x=-\frac{3}{2}
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}