3 ( x - 1 ) - ( x - 3 ) + 5 ( x - 2 ) = 18 ( R
Solve for R
R=\frac{7x}{18}-\frac{5}{9}
Solve for x
x=\frac{18R+10}{7}
Graph
Share
Copied to clipboard
3x-3-\left(x-3\right)+5\left(x-2\right)=18R
Use the distributive property to multiply 3 by x-1.
3x-3-x+3+5\left(x-2\right)=18R
To find the opposite of x-3, find the opposite of each term.
2x-3+3+5\left(x-2\right)=18R
Combine 3x and -x to get 2x.
2x+5\left(x-2\right)=18R
Add -3 and 3 to get 0.
2x+5x-10=18R
Use the distributive property to multiply 5 by x-2.
7x-10=18R
Combine 2x and 5x to get 7x.
18R=7x-10
Swap sides so that all variable terms are on the left hand side.
\frac{18R}{18}=\frac{7x-10}{18}
Divide both sides by 18.
R=\frac{7x-10}{18}
Dividing by 18 undoes the multiplication by 18.
R=\frac{7x}{18}-\frac{5}{9}
Divide 7x-10 by 18.
3x-3-\left(x-3\right)+5\left(x-2\right)=18R
Use the distributive property to multiply 3 by x-1.
3x-3-x+3+5\left(x-2\right)=18R
To find the opposite of x-3, find the opposite of each term.
2x-3+3+5\left(x-2\right)=18R
Combine 3x and -x to get 2x.
2x+5\left(x-2\right)=18R
Add -3 and 3 to get 0.
2x+5x-10=18R
Use the distributive property to multiply 5 by x-2.
7x-10=18R
Combine 2x and 5x to get 7x.
7x=18R+10
Add 10 to both sides.
\frac{7x}{7}=\frac{18R+10}{7}
Divide both sides by 7.
x=\frac{18R+10}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}