Solve for x
x = \frac{34}{33} = 1\frac{1}{33} \approx 1.03030303
Graph
Share
Copied to clipboard
3x+3\left(-\frac{2}{3}\right)=\frac{4}{5}\left(x+\frac{1}{3}\right)
Use the distributive property to multiply 3 by x-\frac{2}{3}.
3x-2=\frac{4}{5}\left(x+\frac{1}{3}\right)
Cancel out 3 and 3.
3x-2=\frac{4}{5}x+\frac{4}{5}\times \frac{1}{3}
Use the distributive property to multiply \frac{4}{5} by x+\frac{1}{3}.
3x-2=\frac{4}{5}x+\frac{4\times 1}{5\times 3}
Multiply \frac{4}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
3x-2=\frac{4}{5}x+\frac{4}{15}
Do the multiplications in the fraction \frac{4\times 1}{5\times 3}.
3x-2-\frac{4}{5}x=\frac{4}{15}
Subtract \frac{4}{5}x from both sides.
\frac{11}{5}x-2=\frac{4}{15}
Combine 3x and -\frac{4}{5}x to get \frac{11}{5}x.
\frac{11}{5}x=\frac{4}{15}+2
Add 2 to both sides.
\frac{11}{5}x=\frac{4}{15}+\frac{30}{15}
Convert 2 to fraction \frac{30}{15}.
\frac{11}{5}x=\frac{4+30}{15}
Since \frac{4}{15} and \frac{30}{15} have the same denominator, add them by adding their numerators.
\frac{11}{5}x=\frac{34}{15}
Add 4 and 30 to get 34.
x=\frac{34}{15}\times \frac{5}{11}
Multiply both sides by \frac{5}{11}, the reciprocal of \frac{11}{5}.
x=\frac{34\times 5}{15\times 11}
Multiply \frac{34}{15} times \frac{5}{11} by multiplying numerator times numerator and denominator times denominator.
x=\frac{170}{165}
Do the multiplications in the fraction \frac{34\times 5}{15\times 11}.
x=\frac{34}{33}
Reduce the fraction \frac{170}{165} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}