Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+2\left(x-\frac{1}{3}\right)-4\left(\frac{1}{6}x-\frac{5}{3}\right)>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
3x^{2}-2x+\frac{1}{3}+2\left(x-\frac{1}{3}\right)-4\left(\frac{1}{6}x-\frac{5}{3}\right)>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Use the distributive property to multiply 3 by x^{2}-\frac{2}{3}x+\frac{1}{9}.
3x^{2}-2x+\frac{1}{3}+2x-\frac{2}{3}-4\left(\frac{1}{6}x-\frac{5}{3}\right)>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Use the distributive property to multiply 2 by x-\frac{1}{3}.
3x^{2}+\frac{1}{3}-\frac{2}{3}-4\left(\frac{1}{6}x-\frac{5}{3}\right)>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Combine -2x and 2x to get 0.
3x^{2}-\frac{1}{3}-4\left(\frac{1}{6}x-\frac{5}{3}\right)>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Subtract \frac{2}{3} from \frac{1}{3} to get -\frac{1}{3}.
3x^{2}-\frac{1}{3}-\frac{2}{3}x+\frac{20}{3}>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Use the distributive property to multiply -4 by \frac{1}{6}x-\frac{5}{3}.
3x^{2}+\frac{19}{3}-\frac{2}{3}x>\left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right)-x^{2}
Add -\frac{1}{3} and \frac{20}{3} to get \frac{19}{3}.
3x^{2}+\frac{19}{3}-\frac{2}{3}x>\left(2x\right)^{2}-\frac{1}{9}-x^{2}
Consider \left(2x+\frac{1}{3}\right)\left(2x-\frac{1}{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{3}.
3x^{2}+\frac{19}{3}-\frac{2}{3}x>2^{2}x^{2}-\frac{1}{9}-x^{2}
Expand \left(2x\right)^{2}.
3x^{2}+\frac{19}{3}-\frac{2}{3}x>4x^{2}-\frac{1}{9}-x^{2}
Calculate 2 to the power of 2 and get 4.
3x^{2}+\frac{19}{3}-\frac{2}{3}x>3x^{2}-\frac{1}{9}
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+\frac{19}{3}-\frac{2}{3}x-3x^{2}>-\frac{1}{9}
Subtract 3x^{2} from both sides.
\frac{19}{3}-\frac{2}{3}x>-\frac{1}{9}
Combine 3x^{2} and -3x^{2} to get 0.
-\frac{2}{3}x>-\frac{1}{9}-\frac{19}{3}
Subtract \frac{19}{3} from both sides.
-\frac{2}{3}x>-\frac{58}{9}
Subtract \frac{19}{3} from -\frac{1}{9} to get -\frac{58}{9}.
x<-\frac{58}{9}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}. Since -\frac{2}{3} is negative, the inequality direction is changed.
x<\frac{29}{3}
Multiply -\frac{58}{9} and -\frac{3}{2} to get \frac{29}{3}.