Solve for x (complex solution)
x=\frac{-3+3\sqrt{19}i}{2}\approx -1.5+6.538348415i
x=\frac{-3\sqrt{19}i-3}{2}\approx -1.5-6.538348415i
Graph
Share
Copied to clipboard
3\left(2x-30\right)=2x\left(x+6\right)
Combine x and x to get 2x.
6x-90=2x\left(x+6\right)
Use the distributive property to multiply 3 by 2x-30.
6x-90=2x^{2}+12x
Use the distributive property to multiply 2x by x+6.
6x-90-2x^{2}=12x
Subtract 2x^{2} from both sides.
6x-90-2x^{2}-12x=0
Subtract 12x from both sides.
-6x-90-2x^{2}=0
Combine 6x and -12x to get -6x.
-2x^{2}-6x-90=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -6 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\left(-90\right)}}{2\left(-2\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\left(-90\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-6\right)±\sqrt{36-720}}{2\left(-2\right)}
Multiply 8 times -90.
x=\frac{-\left(-6\right)±\sqrt{-684}}{2\left(-2\right)}
Add 36 to -720.
x=\frac{-\left(-6\right)±6\sqrt{19}i}{2\left(-2\right)}
Take the square root of -684.
x=\frac{6±6\sqrt{19}i}{2\left(-2\right)}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{19}i}{-4}
Multiply 2 times -2.
x=\frac{6+6\sqrt{19}i}{-4}
Now solve the equation x=\frac{6±6\sqrt{19}i}{-4} when ± is plus. Add 6 to 6i\sqrt{19}.
x=\frac{-3\sqrt{19}i-3}{2}
Divide 6+6i\sqrt{19} by -4.
x=\frac{-6\sqrt{19}i+6}{-4}
Now solve the equation x=\frac{6±6\sqrt{19}i}{-4} when ± is minus. Subtract 6i\sqrt{19} from 6.
x=\frac{-3+3\sqrt{19}i}{2}
Divide 6-6i\sqrt{19} by -4.
x=\frac{-3\sqrt{19}i-3}{2} x=\frac{-3+3\sqrt{19}i}{2}
The equation is now solved.
3\left(2x-30\right)=2x\left(x+6\right)
Combine x and x to get 2x.
6x-90=2x\left(x+6\right)
Use the distributive property to multiply 3 by 2x-30.
6x-90=2x^{2}+12x
Use the distributive property to multiply 2x by x+6.
6x-90-2x^{2}=12x
Subtract 2x^{2} from both sides.
6x-90-2x^{2}-12x=0
Subtract 12x from both sides.
-6x-90-2x^{2}=0
Combine 6x and -12x to get -6x.
-6x-2x^{2}=90
Add 90 to both sides. Anything plus zero gives itself.
-2x^{2}-6x=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-6x}{-2}=\frac{90}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{6}{-2}\right)x=\frac{90}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+3x=\frac{90}{-2}
Divide -6 by -2.
x^{2}+3x=-45
Divide 90 by -2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-45+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-45+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{171}{4}
Add -45 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{171}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{171}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{3\sqrt{19}i}{2} x+\frac{3}{2}=-\frac{3\sqrt{19}i}{2}
Simplify.
x=\frac{-3+3\sqrt{19}i}{2} x=\frac{-3\sqrt{19}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}