Solve for x
x=2\sqrt{5}-5\approx -0.527864045
x=-2\sqrt{5}-5\approx -9.472135955
Graph
Share
Copied to clipboard
\frac{3\left(x+5\right)^{2}}{3}=\frac{60}{3}
Divide both sides by 3.
\left(x+5\right)^{2}=\frac{60}{3}
Dividing by 3 undoes the multiplication by 3.
\left(x+5\right)^{2}=20
Divide 60 by 3.
x+5=2\sqrt{5} x+5=-2\sqrt{5}
Take the square root of both sides of the equation.
x+5-5=2\sqrt{5}-5 x+5-5=-2\sqrt{5}-5
Subtract 5 from both sides of the equation.
x=2\sqrt{5}-5 x=-2\sqrt{5}-5
Subtracting 5 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}