Solve for x
x = -\frac{83}{2} = -41\frac{1}{2} = -41.5
Graph
Share
Copied to clipboard
3x+3-5\left(x+10\right)=9\left(x-4\right)-9\left(x-8\right)
Use the distributive property to multiply 3 by x+1.
3x+3-5x-50=9\left(x-4\right)-9\left(x-8\right)
Use the distributive property to multiply -5 by x+10.
-2x+3-50=9\left(x-4\right)-9\left(x-8\right)
Combine 3x and -5x to get -2x.
-2x-47=9\left(x-4\right)-9\left(x-8\right)
Subtract 50 from 3 to get -47.
-2x-47=9x-36-9\left(x-8\right)
Use the distributive property to multiply 9 by x-4.
-2x-47=9x-36-9x+72
Use the distributive property to multiply -9 by x-8.
-2x-47=-36+72
Combine 9x and -9x to get 0.
-2x-47=36
Add -36 and 72 to get 36.
-2x=36+47
Add 47 to both sides.
-2x=83
Add 36 and 47 to get 83.
x=\frac{83}{-2}
Divide both sides by -2.
x=-\frac{83}{2}
Fraction \frac{83}{-2} can be rewritten as -\frac{83}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}