Solve for x
x=1
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
3\left(x^{2}+2x+1\right)+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}+6x+3+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 3 by x^{2}+2x+1.
3x^{2}+6x+3+\left(5x+5\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5 by x+1.
3x^{2}+6x+3+5x^{2}-15x-20+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5x+5 by x-4 and combine like terms.
8x^{2}+6x+3-15x-20+2\left(x-4\right)^{2}=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
8x^{2}-9x+3-20+2\left(x-4\right)^{2}=0
Combine 6x and -15x to get -9x.
8x^{2}-9x-17+2\left(x-4\right)^{2}=0
Subtract 20 from 3 to get -17.
8x^{2}-9x-17+2\left(x^{2}-8x+16\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
8x^{2}-9x-17+2x^{2}-16x+32=0
Use the distributive property to multiply 2 by x^{2}-8x+16.
10x^{2}-9x-17-16x+32=0
Combine 8x^{2} and 2x^{2} to get 10x^{2}.
10x^{2}-25x-17+32=0
Combine -9x and -16x to get -25x.
10x^{2}-25x+15=0
Add -17 and 32 to get 15.
2x^{2}-5x+3=0
Divide both sides by 5.
a+b=-5 ab=2\times 3=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-3 b=-2
The solution is the pair that gives sum -5.
\left(2x^{2}-3x\right)+\left(-2x+3\right)
Rewrite 2x^{2}-5x+3 as \left(2x^{2}-3x\right)+\left(-2x+3\right).
x\left(2x-3\right)-\left(2x-3\right)
Factor out x in the first and -1 in the second group.
\left(2x-3\right)\left(x-1\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=1
To find equation solutions, solve 2x-3=0 and x-1=0.
3\left(x^{2}+2x+1\right)+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}+6x+3+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 3 by x^{2}+2x+1.
3x^{2}+6x+3+\left(5x+5\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5 by x+1.
3x^{2}+6x+3+5x^{2}-15x-20+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5x+5 by x-4 and combine like terms.
8x^{2}+6x+3-15x-20+2\left(x-4\right)^{2}=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
8x^{2}-9x+3-20+2\left(x-4\right)^{2}=0
Combine 6x and -15x to get -9x.
8x^{2}-9x-17+2\left(x-4\right)^{2}=0
Subtract 20 from 3 to get -17.
8x^{2}-9x-17+2\left(x^{2}-8x+16\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
8x^{2}-9x-17+2x^{2}-16x+32=0
Use the distributive property to multiply 2 by x^{2}-8x+16.
10x^{2}-9x-17-16x+32=0
Combine 8x^{2} and 2x^{2} to get 10x^{2}.
10x^{2}-25x-17+32=0
Combine -9x and -16x to get -25x.
10x^{2}-25x+15=0
Add -17 and 32 to get 15.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 10\times 15}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -25 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 10\times 15}}{2\times 10}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-40\times 15}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-25\right)±\sqrt{625-600}}{2\times 10}
Multiply -40 times 15.
x=\frac{-\left(-25\right)±\sqrt{25}}{2\times 10}
Add 625 to -600.
x=\frac{-\left(-25\right)±5}{2\times 10}
Take the square root of 25.
x=\frac{25±5}{2\times 10}
The opposite of -25 is 25.
x=\frac{25±5}{20}
Multiply 2 times 10.
x=\frac{30}{20}
Now solve the equation x=\frac{25±5}{20} when ± is plus. Add 25 to 5.
x=\frac{3}{2}
Reduce the fraction \frac{30}{20} to lowest terms by extracting and canceling out 10.
x=\frac{20}{20}
Now solve the equation x=\frac{25±5}{20} when ± is minus. Subtract 5 from 25.
x=1
Divide 20 by 20.
x=\frac{3}{2} x=1
The equation is now solved.
3\left(x^{2}+2x+1\right)+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}+6x+3+5\left(x+1\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 3 by x^{2}+2x+1.
3x^{2}+6x+3+\left(5x+5\right)\left(x-4\right)+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5 by x+1.
3x^{2}+6x+3+5x^{2}-15x-20+2\left(x-4\right)^{2}=0
Use the distributive property to multiply 5x+5 by x-4 and combine like terms.
8x^{2}+6x+3-15x-20+2\left(x-4\right)^{2}=0
Combine 3x^{2} and 5x^{2} to get 8x^{2}.
8x^{2}-9x+3-20+2\left(x-4\right)^{2}=0
Combine 6x and -15x to get -9x.
8x^{2}-9x-17+2\left(x-4\right)^{2}=0
Subtract 20 from 3 to get -17.
8x^{2}-9x-17+2\left(x^{2}-8x+16\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
8x^{2}-9x-17+2x^{2}-16x+32=0
Use the distributive property to multiply 2 by x^{2}-8x+16.
10x^{2}-9x-17-16x+32=0
Combine 8x^{2} and 2x^{2} to get 10x^{2}.
10x^{2}-25x-17+32=0
Combine -9x and -16x to get -25x.
10x^{2}-25x+15=0
Add -17 and 32 to get 15.
10x^{2}-25x=-15
Subtract 15 from both sides. Anything subtracted from zero gives its negation.
\frac{10x^{2}-25x}{10}=-\frac{15}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{25}{10}\right)x=-\frac{15}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{5}{2}x=-\frac{15}{10}
Reduce the fraction \frac{-25}{10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{5}{2}x=-\frac{3}{2}
Reduce the fraction \frac{-15}{10} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
Add -\frac{3}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{1}{4} x-\frac{5}{4}=-\frac{1}{4}
Simplify.
x=\frac{3}{2} x=1
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}