Evaluate
3\left(v-3\right)\left(v-2\right)\left(v+4\right)
Expand
3v^{3}-3v^{2}-42v+72
Share
Copied to clipboard
\left(3v+12\right)\left(v-3\right)\left(v-2\right)
Use the distributive property to multiply 3 by v+4.
\left(3v^{2}-9v+12v-36\right)\left(v-2\right)
Apply the distributive property by multiplying each term of 3v+12 by each term of v-3.
\left(3v^{2}+3v-36\right)\left(v-2\right)
Combine -9v and 12v to get 3v.
3v^{3}-6v^{2}+3v^{2}-6v-36v+72
Apply the distributive property by multiplying each term of 3v^{2}+3v-36 by each term of v-2.
3v^{3}-3v^{2}-6v-36v+72
Combine -6v^{2} and 3v^{2} to get -3v^{2}.
3v^{3}-3v^{2}-42v+72
Combine -6v and -36v to get -42v.
\left(3v+12\right)\left(v-3\right)\left(v-2\right)
Use the distributive property to multiply 3 by v+4.
\left(3v^{2}-9v+12v-36\right)\left(v-2\right)
Apply the distributive property by multiplying each term of 3v+12 by each term of v-3.
\left(3v^{2}+3v-36\right)\left(v-2\right)
Combine -9v and 12v to get 3v.
3v^{3}-6v^{2}+3v^{2}-6v-36v+72
Apply the distributive property by multiplying each term of 3v^{2}+3v-36 by each term of v-2.
3v^{3}-3v^{2}-6v-36v+72
Combine -6v^{2} and 3v^{2} to get -3v^{2}.
3v^{3}-3v^{2}-42v+72
Combine -6v and -36v to get -42v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}