Solve for m
m=-\frac{1}{4}=-0.25
Share
Copied to clipboard
3\left(m-\frac{3\times 2}{4\times 3}\right)+\frac{3}{2}\times \frac{2}{3}=5m
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
3\left(m-\frac{2}{4}\right)+\frac{3}{2}\times \frac{2}{3}=5m
Cancel out 3 in both numerator and denominator.
3\left(m-\frac{1}{2}\right)+\frac{3}{2}\times \frac{2}{3}=5m
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
3m+3\left(-\frac{1}{2}\right)+\frac{3}{2}\times \frac{2}{3}=5m
Use the distributive property to multiply 3 by m-\frac{1}{2}.
3m+\frac{3\left(-1\right)}{2}+\frac{3}{2}\times \frac{2}{3}=5m
Express 3\left(-\frac{1}{2}\right) as a single fraction.
3m+\frac{-3}{2}+\frac{3}{2}\times \frac{2}{3}=5m
Multiply 3 and -1 to get -3.
3m-\frac{3}{2}+\frac{3}{2}\times \frac{2}{3}=5m
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
3m-\frac{3}{2}+1=5m
Cancel out \frac{3}{2} and its reciprocal \frac{2}{3}.
3m-\frac{3}{2}+\frac{2}{2}=5m
Convert 1 to fraction \frac{2}{2}.
3m+\frac{-3+2}{2}=5m
Since -\frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
3m-\frac{1}{2}=5m
Add -3 and 2 to get -1.
3m-\frac{1}{2}-5m=0
Subtract 5m from both sides.
-2m-\frac{1}{2}=0
Combine 3m and -5m to get -2m.
-2m=\frac{1}{2}
Add \frac{1}{2} to both sides. Anything plus zero gives itself.
m=\frac{\frac{1}{2}}{-2}
Divide both sides by -2.
m=\frac{1}{2\left(-2\right)}
Express \frac{\frac{1}{2}}{-2} as a single fraction.
m=\frac{1}{-4}
Multiply 2 and -2 to get -4.
m=-\frac{1}{4}
Fraction \frac{1}{-4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}