Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

3k-6-6=4k\left(3k-1\right)
Use the distributive property to multiply 3 by k-2.
3k-12=4k\left(3k-1\right)
Subtract 6 from -6 to get -12.
3k-12=12k^{2}-4k
Use the distributive property to multiply 4k by 3k-1.
3k-12-12k^{2}=-4k
Subtract 12k^{2} from both sides.
3k-12-12k^{2}+4k=0
Add 4k to both sides.
7k-12-12k^{2}=0
Combine 3k and 4k to get 7k.
-12k^{2}+7k-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-7±\sqrt{7^{2}-4\left(-12\right)\left(-12\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 7 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-7±\sqrt{49-4\left(-12\right)\left(-12\right)}}{2\left(-12\right)}
Square 7.
k=\frac{-7±\sqrt{49+48\left(-12\right)}}{2\left(-12\right)}
Multiply -4 times -12.
k=\frac{-7±\sqrt{49-576}}{2\left(-12\right)}
Multiply 48 times -12.
k=\frac{-7±\sqrt{-527}}{2\left(-12\right)}
Add 49 to -576.
k=\frac{-7±\sqrt{527}i}{2\left(-12\right)}
Take the square root of -527.
k=\frac{-7±\sqrt{527}i}{-24}
Multiply 2 times -12.
k=\frac{-7+\sqrt{527}i}{-24}
Now solve the equation k=\frac{-7±\sqrt{527}i}{-24} when ± is plus. Add -7 to i\sqrt{527}.
k=\frac{-\sqrt{527}i+7}{24}
Divide -7+i\sqrt{527} by -24.
k=\frac{-\sqrt{527}i-7}{-24}
Now solve the equation k=\frac{-7±\sqrt{527}i}{-24} when ± is minus. Subtract i\sqrt{527} from -7.
k=\frac{7+\sqrt{527}i}{24}
Divide -7-i\sqrt{527} by -24.
k=\frac{-\sqrt{527}i+7}{24} k=\frac{7+\sqrt{527}i}{24}
The equation is now solved.
3k-6-6=4k\left(3k-1\right)
Use the distributive property to multiply 3 by k-2.
3k-12=4k\left(3k-1\right)
Subtract 6 from -6 to get -12.
3k-12=12k^{2}-4k
Use the distributive property to multiply 4k by 3k-1.
3k-12-12k^{2}=-4k
Subtract 12k^{2} from both sides.
3k-12-12k^{2}+4k=0
Add 4k to both sides.
7k-12-12k^{2}=0
Combine 3k and 4k to get 7k.
7k-12k^{2}=12
Add 12 to both sides. Anything plus zero gives itself.
-12k^{2}+7k=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12k^{2}+7k}{-12}=\frac{12}{-12}
Divide both sides by -12.
k^{2}+\frac{7}{-12}k=\frac{12}{-12}
Dividing by -12 undoes the multiplication by -12.
k^{2}-\frac{7}{12}k=\frac{12}{-12}
Divide 7 by -12.
k^{2}-\frac{7}{12}k=-1
Divide 12 by -12.
k^{2}-\frac{7}{12}k+\left(-\frac{7}{24}\right)^{2}=-1+\left(-\frac{7}{24}\right)^{2}
Divide -\frac{7}{12}, the coefficient of the x term, by 2 to get -\frac{7}{24}. Then add the square of -\frac{7}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{7}{12}k+\frac{49}{576}=-1+\frac{49}{576}
Square -\frac{7}{24} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{7}{12}k+\frac{49}{576}=-\frac{527}{576}
Add -1 to \frac{49}{576}.
\left(k-\frac{7}{24}\right)^{2}=-\frac{527}{576}
Factor k^{2}-\frac{7}{12}k+\frac{49}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{7}{24}\right)^{2}}=\sqrt{-\frac{527}{576}}
Take the square root of both sides of the equation.
k-\frac{7}{24}=\frac{\sqrt{527}i}{24} k-\frac{7}{24}=-\frac{\sqrt{527}i}{24}
Simplify.
k=\frac{7+\sqrt{527}i}{24} k=\frac{-\sqrt{527}i+7}{24}
Add \frac{7}{24} to both sides of the equation.