Evaluate
6\left(k+2\right)\left(k^{2}-1\right)
Expand
6k^{3}+12k^{2}-6k-12
Share
Copied to clipboard
\left(3k+3\right)\left(2k+4\right)\left(k-1\right)
Use the distributive property to multiply 3 by k+1.
\left(6k^{2}+12k+6k+12\right)\left(k-1\right)
Apply the distributive property by multiplying each term of 3k+3 by each term of 2k+4.
\left(6k^{2}+18k+12\right)\left(k-1\right)
Combine 12k and 6k to get 18k.
6k^{3}-6k^{2}+18k^{2}-18k+12k-12
Apply the distributive property by multiplying each term of 6k^{2}+18k+12 by each term of k-1.
6k^{3}+12k^{2}-18k+12k-12
Combine -6k^{2} and 18k^{2} to get 12k^{2}.
6k^{3}+12k^{2}-6k-12
Combine -18k and 12k to get -6k.
\left(3k+3\right)\left(2k+4\right)\left(k-1\right)
Use the distributive property to multiply 3 by k+1.
\left(6k^{2}+12k+6k+12\right)\left(k-1\right)
Apply the distributive property by multiplying each term of 3k+3 by each term of 2k+4.
\left(6k^{2}+18k+12\right)\left(k-1\right)
Combine 12k and 6k to get 18k.
6k^{3}-6k^{2}+18k^{2}-18k+12k-12
Apply the distributive property by multiplying each term of 6k^{2}+18k+12 by each term of k-1.
6k^{3}+12k^{2}-18k+12k-12
Combine -6k^{2} and 18k^{2} to get 12k^{2}.
6k^{3}+12k^{2}-6k-12
Combine -18k and 12k to get -6k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}