Solve for h
h = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
3\left(h^{2}-4h+4\right)\left(h+5\right)=3\left(h+1\right)^{2}\left(h-1\right)+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(h-2\right)^{2}.
\left(3h^{2}-12h+12\right)\left(h+5\right)=3\left(h+1\right)^{2}\left(h-1\right)+3
Use the distributive property to multiply 3 by h^{2}-4h+4.
3h^{3}+3h^{2}-48h+60=3\left(h+1\right)^{2}\left(h-1\right)+3
Use the distributive property to multiply 3h^{2}-12h+12 by h+5 and combine like terms.
3h^{3}+3h^{2}-48h+60=3\left(h^{2}+2h+1\right)\left(h-1\right)+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(h+1\right)^{2}.
3h^{3}+3h^{2}-48h+60=\left(3h^{2}+6h+3\right)\left(h-1\right)+3
Use the distributive property to multiply 3 by h^{2}+2h+1.
3h^{3}+3h^{2}-48h+60=3h^{3}+3h^{2}-3h-3+3
Use the distributive property to multiply 3h^{2}+6h+3 by h-1 and combine like terms.
3h^{3}+3h^{2}-48h+60=3h^{3}+3h^{2}-3h
Add -3 and 3 to get 0.
3h^{3}+3h^{2}-48h+60-3h^{3}=3h^{2}-3h
Subtract 3h^{3} from both sides.
3h^{2}-48h+60=3h^{2}-3h
Combine 3h^{3} and -3h^{3} to get 0.
3h^{2}-48h+60-3h^{2}=-3h
Subtract 3h^{2} from both sides.
-48h+60=-3h
Combine 3h^{2} and -3h^{2} to get 0.
-48h+60+3h=0
Add 3h to both sides.
-45h+60=0
Combine -48h and 3h to get -45h.
-45h=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
h=\frac{-60}{-45}
Divide both sides by -45.
h=\frac{4}{3}
Reduce the fraction \frac{-60}{-45} to lowest terms by extracting and canceling out -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}