Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

3a^{8}-\left(-a\right)\left(a^{4}\right)^{4}+\left(a^{4}\right)^{2}\left(-a^{3}\right)\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
3a^{8}-\left(-a\right)a^{16}+\left(a^{4}\right)^{2}\left(-a^{3}\right)\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 4 to get 16.
3a^{8}-\left(-a\right)a^{16}+a^{8}\left(-a^{3}\right)\left(a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
3a^{8}-\left(-a\right)a^{16}+a^{8}\left(-a^{3}\right)a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
3a^{8}-\left(-a\right)a^{16}+a^{14}\left(-a^{3}\right)
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
3a^{8}-\left(-a^{17}\right)+a^{14}\left(-1\right)a^{3}
To multiply powers of the same base, add their exponents. Add 1 and 16 to get 17.
3a^{8}+a^{17}+a^{14}\left(-1\right)a^{3}
Multiply -1 and -1 to get 1.
3a^{8}+a^{17}+a^{17}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 14 and 3 to get 17.
3a^{8}
Combine a^{17} and a^{17}\left(-1\right) to get 0.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a\right)\left(a^{4}\right)^{4}+\left(a^{4}\right)^{2}\left(-a^{3}\right)\left(a^{2}\right)^{3})
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a\right)a^{16}+\left(a^{4}\right)^{2}\left(-a^{3}\right)\left(a^{2}\right)^{3})
To raise a power to another power, multiply the exponents. Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a\right)a^{16}+a^{8}\left(-a^{3}\right)\left(a^{2}\right)^{3})
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a\right)a^{16}+a^{8}\left(-a^{3}\right)a^{6})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a\right)a^{16}+a^{14}\left(-a^{3}\right))
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}-\left(-a^{17}\right)+a^{14}\left(-1\right)a^{3})
To multiply powers of the same base, add their exponents. Add 1 and 16 to get 17.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}+a^{17}+a^{14}\left(-1\right)a^{3})
Multiply -1 and -1 to get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8}+a^{17}+a^{17}\left(-1\right))
To multiply powers of the same base, add their exponents. Add 14 and 3 to get 17.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{8})
Combine a^{17} and a^{17}\left(-1\right) to get 0.
8\times 3a^{8-1}
The derivative of ax^{n} is nax^{n-1}.
24a^{8-1}
Multiply 8 times 3.
24a^{7}
Subtract 1 from 8.