Solve for x
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
Graph
Share
Copied to clipboard
15x+6=5x-12
Use the distributive property to multiply 3 by 5x+2.
15x+6-5x=-12
Subtract 5x from both sides.
10x+6=-12
Combine 15x and -5x to get 10x.
10x=-12-6
Subtract 6 from both sides.
10x=-18
Subtract 6 from -12 to get -18.
x=\frac{-18}{10}
Divide both sides by 10.
x=-\frac{9}{5}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}