Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(5-x\right)\left(1-2x\right)=42
Multiply 3 and 3 to get 9.
\left(45-9x\right)\left(1-2x\right)=42
Use the distributive property to multiply 9 by 5-x.
45-99x+18x^{2}=42
Use the distributive property to multiply 45-9x by 1-2x and combine like terms.
45-99x+18x^{2}-42=0
Subtract 42 from both sides.
3-99x+18x^{2}=0
Subtract 42 from 45 to get 3.
18x^{2}-99x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-99\right)±\sqrt{\left(-99\right)^{2}-4\times 18\times 3}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, -99 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-99\right)±\sqrt{9801-4\times 18\times 3}}{2\times 18}
Square -99.
x=\frac{-\left(-99\right)±\sqrt{9801-72\times 3}}{2\times 18}
Multiply -4 times 18.
x=\frac{-\left(-99\right)±\sqrt{9801-216}}{2\times 18}
Multiply -72 times 3.
x=\frac{-\left(-99\right)±\sqrt{9585}}{2\times 18}
Add 9801 to -216.
x=\frac{-\left(-99\right)±3\sqrt{1065}}{2\times 18}
Take the square root of 9585.
x=\frac{99±3\sqrt{1065}}{2\times 18}
The opposite of -99 is 99.
x=\frac{99±3\sqrt{1065}}{36}
Multiply 2 times 18.
x=\frac{3\sqrt{1065}+99}{36}
Now solve the equation x=\frac{99±3\sqrt{1065}}{36} when ± is plus. Add 99 to 3\sqrt{1065}.
x=\frac{\sqrt{1065}}{12}+\frac{11}{4}
Divide 99+3\sqrt{1065} by 36.
x=\frac{99-3\sqrt{1065}}{36}
Now solve the equation x=\frac{99±3\sqrt{1065}}{36} when ± is minus. Subtract 3\sqrt{1065} from 99.
x=-\frac{\sqrt{1065}}{12}+\frac{11}{4}
Divide 99-3\sqrt{1065} by 36.
x=\frac{\sqrt{1065}}{12}+\frac{11}{4} x=-\frac{\sqrt{1065}}{12}+\frac{11}{4}
The equation is now solved.
9\left(5-x\right)\left(1-2x\right)=42
Multiply 3 and 3 to get 9.
\left(45-9x\right)\left(1-2x\right)=42
Use the distributive property to multiply 9 by 5-x.
45-99x+18x^{2}=42
Use the distributive property to multiply 45-9x by 1-2x and combine like terms.
-99x+18x^{2}=42-45
Subtract 45 from both sides.
-99x+18x^{2}=-3
Subtract 45 from 42 to get -3.
18x^{2}-99x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{18x^{2}-99x}{18}=-\frac{3}{18}
Divide both sides by 18.
x^{2}+\left(-\frac{99}{18}\right)x=-\frac{3}{18}
Dividing by 18 undoes the multiplication by 18.
x^{2}-\frac{11}{2}x=-\frac{3}{18}
Reduce the fraction \frac{-99}{18} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{11}{2}x=-\frac{1}{6}
Reduce the fraction \frac{-3}{18} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{1}{6}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{1}{6}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{355}{48}
Add -\frac{1}{6} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{4}\right)^{2}=\frac{355}{48}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{355}{48}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{\sqrt{1065}}{12} x-\frac{11}{4}=-\frac{\sqrt{1065}}{12}
Simplify.
x=\frac{\sqrt{1065}}{12}+\frac{11}{4} x=-\frac{\sqrt{1065}}{12}+\frac{11}{4}
Add \frac{11}{4} to both sides of the equation.