Evaluate
-\frac{5}{2}=-2.5
Factor
-\frac{5}{2} = -2\frac{1}{2} = -2.5
Share
Copied to clipboard
3\left(\frac{45+4}{9}-\frac{6\times 18+5}{18}\right)
Multiply 5 and 9 to get 45.
3\left(\frac{49}{9}-\frac{6\times 18+5}{18}\right)
Add 45 and 4 to get 49.
3\left(\frac{49}{9}-\frac{108+5}{18}\right)
Multiply 6 and 18 to get 108.
3\left(\frac{49}{9}-\frac{113}{18}\right)
Add 108 and 5 to get 113.
3\left(\frac{98}{18}-\frac{113}{18}\right)
Least common multiple of 9 and 18 is 18. Convert \frac{49}{9} and \frac{113}{18} to fractions with denominator 18.
3\times \frac{98-113}{18}
Since \frac{98}{18} and \frac{113}{18} have the same denominator, subtract them by subtracting their numerators.
3\times \frac{-15}{18}
Subtract 113 from 98 to get -15.
3\left(-\frac{5}{6}\right)
Reduce the fraction \frac{-15}{18} to lowest terms by extracting and canceling out 3.
\frac{3\left(-5\right)}{6}
Express 3\left(-\frac{5}{6}\right) as a single fraction.
\frac{-15}{6}
Multiply 3 and -5 to get -15.
-\frac{5}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}