Solve for h
h>8.125
Share
Copied to clipboard
10.8h+15>4\left(2.3h+7\right)
Use the distributive property to multiply 3 by 3.6h+5.
10.8h+15>9.2h+28
Use the distributive property to multiply 4 by 2.3h+7.
10.8h+15-9.2h>28
Subtract 9.2h from both sides.
1.6h+15>28
Combine 10.8h and -9.2h to get 1.6h.
1.6h>28-15
Subtract 15 from both sides.
1.6h>13
Subtract 15 from 28 to get 13.
h>\frac{13}{1.6}
Divide both sides by 1.6. Since 1.6 is positive, the inequality direction remains the same.
h>\frac{130}{16}
Expand \frac{13}{1.6} by multiplying both numerator and the denominator by 10.
h>\frac{65}{8}
Reduce the fraction \frac{130}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}