Solve for s
s=\frac{45-8x}{ex}
x\neq 0
Solve for x
x=\frac{45}{es+8}
s\neq -\frac{8}{e}
Graph
Share
Copied to clipboard
6x-15=2\left(15-x\right)-1esx
Use the distributive property to multiply 3 by 2x-5.
6x-15=30-2x-1esx
Use the distributive property to multiply 2 by 15-x.
30-2x-1esx=6x-15
Swap sides so that all variable terms are on the left hand side.
-2x+30-esx=6x-15
Reorder the terms.
30-esx=6x-15+2x
Add 2x to both sides.
30-esx=8x-15
Combine 6x and 2x to get 8x.
-esx=8x-15-30
Subtract 30 from both sides.
-esx=8x-45
Subtract 30 from -15 to get -45.
\left(-ex\right)s=8x-45
The equation is in standard form.
\frac{\left(-ex\right)s}{-ex}=\frac{8x-45}{-ex}
Divide both sides by -ex.
s=\frac{8x-45}{-ex}
Dividing by -ex undoes the multiplication by -ex.
s=\frac{45-8x}{ex}
Divide 8x-45 by -ex.
6x-15=2\left(15-x\right)-1esx
Use the distributive property to multiply 3 by 2x-5.
6x-15=30-2x-1esx
Use the distributive property to multiply 2 by 15-x.
6x-15+1esx=30-2x
Add 1esx to both sides.
6x-15+1esx+2x=30
Add 2x to both sides.
8x-15+1esx=30
Combine 6x and 2x to get 8x.
8x+1esx=30+15
Add 15 to both sides.
8x+1esx=45
Add 30 and 15 to get 45.
esx+8x=45
Reorder the terms.
\left(es+8\right)x=45
Combine all terms containing x.
\frac{\left(es+8\right)x}{es+8}=\frac{45}{es+8}
Divide both sides by 8+es.
x=\frac{45}{es+8}
Dividing by 8+es undoes the multiplication by 8+es.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}