Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(4x^{2}-4x+1\right)-4\left(2x-1\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
12x^{2}-12x+3-4\left(2x-1\right)=4
Use the distributive property to multiply 3 by 4x^{2}-4x+1.
12x^{2}-12x+3-8x+4=4
Use the distributive property to multiply -4 by 2x-1.
12x^{2}-20x+3+4=4
Combine -12x and -8x to get -20x.
12x^{2}-20x+7=4
Add 3 and 4 to get 7.
12x^{2}-20x+7-4=0
Subtract 4 from both sides.
12x^{2}-20x+3=0
Subtract 4 from 7 to get 3.
a+b=-20 ab=12\times 3=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-18 b=-2
The solution is the pair that gives sum -20.
\left(12x^{2}-18x\right)+\left(-2x+3\right)
Rewrite 12x^{2}-20x+3 as \left(12x^{2}-18x\right)+\left(-2x+3\right).
6x\left(2x-3\right)-\left(2x-3\right)
Factor out 6x in the first and -1 in the second group.
\left(2x-3\right)\left(6x-1\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=\frac{1}{6}
To find equation solutions, solve 2x-3=0 and 6x-1=0.
3\left(4x^{2}-4x+1\right)-4\left(2x-1\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
12x^{2}-12x+3-4\left(2x-1\right)=4
Use the distributive property to multiply 3 by 4x^{2}-4x+1.
12x^{2}-12x+3-8x+4=4
Use the distributive property to multiply -4 by 2x-1.
12x^{2}-20x+3+4=4
Combine -12x and -8x to get -20x.
12x^{2}-20x+7=4
Add 3 and 4 to get 7.
12x^{2}-20x+7-4=0
Subtract 4 from both sides.
12x^{2}-20x+3=0
Subtract 4 from 7 to get 3.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 12\times 3}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -20 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 12\times 3}}{2\times 12}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-48\times 3}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-20\right)±\sqrt{400-144}}{2\times 12}
Multiply -48 times 3.
x=\frac{-\left(-20\right)±\sqrt{256}}{2\times 12}
Add 400 to -144.
x=\frac{-\left(-20\right)±16}{2\times 12}
Take the square root of 256.
x=\frac{20±16}{2\times 12}
The opposite of -20 is 20.
x=\frac{20±16}{24}
Multiply 2 times 12.
x=\frac{36}{24}
Now solve the equation x=\frac{20±16}{24} when ± is plus. Add 20 to 16.
x=\frac{3}{2}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
x=\frac{4}{24}
Now solve the equation x=\frac{20±16}{24} when ± is minus. Subtract 16 from 20.
x=\frac{1}{6}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=\frac{1}{6}
The equation is now solved.
3\left(4x^{2}-4x+1\right)-4\left(2x-1\right)=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
12x^{2}-12x+3-4\left(2x-1\right)=4
Use the distributive property to multiply 3 by 4x^{2}-4x+1.
12x^{2}-12x+3-8x+4=4
Use the distributive property to multiply -4 by 2x-1.
12x^{2}-20x+3+4=4
Combine -12x and -8x to get -20x.
12x^{2}-20x+7=4
Add 3 and 4 to get 7.
12x^{2}-20x=4-7
Subtract 7 from both sides.
12x^{2}-20x=-3
Subtract 7 from 4 to get -3.
\frac{12x^{2}-20x}{12}=-\frac{3}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{20}{12}\right)x=-\frac{3}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{5}{3}x=-\frac{3}{12}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{5}{3}x=-\frac{1}{4}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{1}{4}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{1}{4}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{4}{9}
Add -\frac{1}{4} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{2}{3} x-\frac{5}{6}=-\frac{2}{3}
Simplify.
x=\frac{3}{2} x=\frac{1}{6}
Add \frac{5}{6} to both sides of the equation.