Solve for x
x\leq 20
Graph
Share
Copied to clipboard
18\left(2x-\frac{x+2}{2}\right)\geq 30\left(x+1\right)+2\left(2x-4\right)-6x-60
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
36x+18\left(-\frac{x+2}{2}\right)\geq 30\left(x+1\right)+2\left(2x-4\right)-6x-60
Use the distributive property to multiply 18 by 2x-\frac{x+2}{2}.
36x-9\left(x+2\right)\geq 30\left(x+1\right)+2\left(2x-4\right)-6x-60
Cancel out 2, the greatest common factor in 18 and 2.
36x-9x-18\geq 30\left(x+1\right)+2\left(2x-4\right)-6x-60
Use the distributive property to multiply -9 by x+2.
27x-18\geq 30\left(x+1\right)+2\left(2x-4\right)-6x-60
Combine 36x and -9x to get 27x.
27x-18\geq 30x+30+2\left(2x-4\right)-6x-60
Use the distributive property to multiply 30 by x+1.
27x-18\geq 30x+30+4x-8-6x-60
Use the distributive property to multiply 2 by 2x-4.
27x-18\geq 34x+30-8-6x-60
Combine 30x and 4x to get 34x.
27x-18\geq 34x+22-6x-60
Subtract 8 from 30 to get 22.
27x-18\geq 28x+22-60
Combine 34x and -6x to get 28x.
27x-18\geq 28x-38
Subtract 60 from 22 to get -38.
27x-18-28x\geq -38
Subtract 28x from both sides.
-x-18\geq -38
Combine 27x and -28x to get -x.
-x\geq -38+18
Add 18 to both sides.
-x\geq -20
Add -38 and 18 to get -20.
x\leq \frac{-20}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
x\leq 20
Fraction \frac{-20}{-1} can be simplified to 20 by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}