Solve for p
p = \frac{10}{9} = 1\frac{1}{9} \approx 1.111111111
Share
Copied to clipboard
6p-3=5-\left(3p-2\right)
Use the distributive property to multiply 3 by 2p-1.
6p-3=5-3p-\left(-2\right)
To find the opposite of 3p-2, find the opposite of each term.
6p-3=5-3p+2
The opposite of -2 is 2.
6p-3=7-3p
Add 5 and 2 to get 7.
6p-3+3p=7
Add 3p to both sides.
9p-3=7
Combine 6p and 3p to get 9p.
9p=7+3
Add 3 to both sides.
9p=10
Add 7 and 3 to get 10.
p=\frac{10}{9}
Divide both sides by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}