Solve for p
p<\frac{1}{2}
Share
Copied to clipboard
6p+3\times \frac{1}{3}>4\left(3p-\frac{1}{2}\right)
Use the distributive property to multiply 3 by 2p+\frac{1}{3}.
6p+1>4\left(3p-\frac{1}{2}\right)
Cancel out 3 and 3.
6p+1>12p+4\left(-\frac{1}{2}\right)
Use the distributive property to multiply 4 by 3p-\frac{1}{2}.
6p+1>12p+\frac{4\left(-1\right)}{2}
Express 4\left(-\frac{1}{2}\right) as a single fraction.
6p+1>12p+\frac{-4}{2}
Multiply 4 and -1 to get -4.
6p+1>12p-2
Divide -4 by 2 to get -2.
6p+1-12p>-2
Subtract 12p from both sides.
-6p+1>-2
Combine 6p and -12p to get -6p.
-6p>-2-1
Subtract 1 from both sides.
-6p>-3
Subtract 1 from -2 to get -3.
p<\frac{-3}{-6}
Divide both sides by -6. Since -6 is negative, the inequality direction is changed.
p<\frac{1}{2}
Reduce the fraction \frac{-3}{-6} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}