Solve for x (complex solution)
\left\{\begin{matrix}\\x=a-3\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=a-3\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=3\end{matrix}\right.
Solve for a
a=3
a=x+3
Graph
Share
Copied to clipboard
6a-3x+ax=a^{2}+9
Use the distributive property to multiply 3 by 2a-x.
-3x+ax=a^{2}+9-6a
Subtract 6a from both sides.
\left(-3+a\right)x=a^{2}+9-6a
Combine all terms containing x.
\left(a-3\right)x=a^{2}-6a+9
The equation is in standard form.
\frac{\left(a-3\right)x}{a-3}=\frac{\left(a-3\right)^{2}}{a-3}
Divide both sides by -3+a.
x=\frac{\left(a-3\right)^{2}}{a-3}
Dividing by -3+a undoes the multiplication by -3+a.
x=a-3
Divide \left(a-3\right)^{2} by -3+a.
6a-3x+ax=a^{2}+9
Use the distributive property to multiply 3 by 2a-x.
-3x+ax=a^{2}+9-6a
Subtract 6a from both sides.
\left(-3+a\right)x=a^{2}+9-6a
Combine all terms containing x.
\left(a-3\right)x=a^{2}-6a+9
The equation is in standard form.
\frac{\left(a-3\right)x}{a-3}=\frac{\left(a-3\right)^{2}}{a-3}
Divide both sides by -3+a.
x=\frac{\left(a-3\right)^{2}}{a-3}
Dividing by -3+a undoes the multiplication by -3+a.
x=a-3
Divide \left(a-3\right)^{2} by -3+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}