Solve for x
x=\frac{9z}{25}-\frac{y}{10}
Solve for y
y=\frac{18z}{5}-10x
Share
Copied to clipboard
300x+30y+3z=111z
Use the distributive property to multiply 3 by 100x+10y+z.
300x+3z=111z-30y
Subtract 30y from both sides.
300x=111z-30y-3z
Subtract 3z from both sides.
300x=108z-30y
Combine 111z and -3z to get 108z.
\frac{300x}{300}=\frac{108z-30y}{300}
Divide both sides by 300.
x=\frac{108z-30y}{300}
Dividing by 300 undoes the multiplication by 300.
x=\frac{9z}{25}-\frac{y}{10}
Divide 108z-30y by 300.
300x+30y+3z=111z
Use the distributive property to multiply 3 by 100x+10y+z.
30y+3z=111z-300x
Subtract 300x from both sides.
30y=111z-300x-3z
Subtract 3z from both sides.
30y=108z-300x
Combine 111z and -3z to get 108z.
\frac{30y}{30}=\frac{108z-300x}{30}
Divide both sides by 30.
y=\frac{108z-300x}{30}
Dividing by 30 undoes the multiplication by 30.
y=\frac{18z}{5}-10x
Divide 108z-300x by 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}