Solve for x (complex solution)
x=\frac{-1+\sqrt{2}i}{3}\approx -0.333333333+0.471404521i
x=\frac{-\sqrt{2}i-1}{3}\approx -0.333333333-0.471404521i
Graph
Share
Copied to clipboard
-\frac{3}{2}x-3=\frac{1}{2}x+1+\frac{1}{2}x^{-1}-\frac{1}{2}x-3
Use the distributive property to multiply 3 by -\frac{1}{2}x-1.
-\frac{3}{2}x-3=1+\frac{1}{2}x^{-1}-3
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.
-\frac{3}{2}x-3=-2+\frac{1}{2}x^{-1}
Subtract 3 from 1 to get -2.
-\frac{3}{2}x-3-\left(-2\right)=\frac{1}{2}x^{-1}
Subtract -2 from both sides.
-\frac{3}{2}x-3+2=\frac{1}{2}x^{-1}
The opposite of -2 is 2.
-\frac{3}{2}x-3+2-\frac{1}{2}x^{-1}=0
Subtract \frac{1}{2}x^{-1} from both sides.
-\frac{3}{2}x-1-\frac{1}{2}x^{-1}=0
Add -3 and 2 to get -1.
-\frac{3}{2}x-1-\frac{1}{2}\times \frac{1}{x}=0
Reorder the terms.
-\frac{3}{2}x\times 2x+2x\left(-1\right)-\frac{1}{2}\times 2=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
-3xx+2x\left(-1\right)-\frac{1}{2}\times 2=0
Multiply -\frac{3}{2} and 2 to get -3.
-3x^{2}+2x\left(-1\right)-\frac{1}{2}\times 2=0
Multiply x and x to get x^{2}.
-3x^{2}-2x-\frac{1}{2}\times 2=0
Multiply 2 and -1 to get -2.
-3x^{2}-2x-1=0
Multiply -\frac{1}{2} and 2 to get -1.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12\left(-1\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{4-12}}{2\left(-3\right)}
Multiply 12 times -1.
x=\frac{-\left(-2\right)±\sqrt{-8}}{2\left(-3\right)}
Add 4 to -12.
x=\frac{-\left(-2\right)±2\sqrt{2}i}{2\left(-3\right)}
Take the square root of -8.
x=\frac{2±2\sqrt{2}i}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{2}i}{-6}
Multiply 2 times -3.
x=\frac{2+2\sqrt{2}i}{-6}
Now solve the equation x=\frac{2±2\sqrt{2}i}{-6} when ± is plus. Add 2 to 2i\sqrt{2}.
x=\frac{-\sqrt{2}i-1}{3}
Divide 2+2i\sqrt{2} by -6.
x=\frac{-2\sqrt{2}i+2}{-6}
Now solve the equation x=\frac{2±2\sqrt{2}i}{-6} when ± is minus. Subtract 2i\sqrt{2} from 2.
x=\frac{-1+\sqrt{2}i}{3}
Divide 2-2i\sqrt{2} by -6.
x=\frac{-\sqrt{2}i-1}{3} x=\frac{-1+\sqrt{2}i}{3}
The equation is now solved.
-\frac{3}{2}x-3=\frac{1}{2}x+1+\frac{1}{2}x^{-1}-\frac{1}{2}x-3
Use the distributive property to multiply 3 by -\frac{1}{2}x-1.
-\frac{3}{2}x-3=1+\frac{1}{2}x^{-1}-3
Combine \frac{1}{2}x and -\frac{1}{2}x to get 0.
-\frac{3}{2}x-3=-2+\frac{1}{2}x^{-1}
Subtract 3 from 1 to get -2.
-\frac{3}{2}x-3-\frac{1}{2}x^{-1}=-2
Subtract \frac{1}{2}x^{-1} from both sides.
-\frac{3}{2}x-\frac{1}{2}x^{-1}=-2+3
Add 3 to both sides.
-\frac{3}{2}x-\frac{1}{2}x^{-1}=1
Add -2 and 3 to get 1.
-\frac{3}{2}x-\frac{1}{2}\times \frac{1}{x}=1
Reorder the terms.
-\frac{3}{2}x\times 2x-\frac{1}{2}\times 2=2x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of 2,x.
-3xx-\frac{1}{2}\times 2=2x
Multiply -\frac{3}{2} and 2 to get -3.
-3x^{2}-\frac{1}{2}\times 2=2x
Multiply x and x to get x^{2}.
-3x^{2}-1=2x
Multiply -\frac{1}{2} and 2 to get -1.
-3x^{2}-1-2x=0
Subtract 2x from both sides.
-3x^{2}-2x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{-3x^{2}-2x}{-3}=\frac{1}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{2}{-3}\right)x=\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{2}{3}x=\frac{1}{-3}
Divide -2 by -3.
x^{2}+\frac{2}{3}x=-\frac{1}{3}
Divide 1 by -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
Add -\frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=-\frac{2}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{2}i}{3} x+\frac{1}{3}=-\frac{\sqrt{2}i}{3}
Simplify.
x=\frac{-1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i-1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}