Solve for y
y=-6\sqrt{85}-56\approx -111.317266744
Graph
Share
Copied to clipboard
3\sqrt{5-10y}=-\left(y+11\right)
Subtract y+11 from both sides of the equation.
3\sqrt{5-10y}=-y-11
To find the opposite of y+11, find the opposite of each term.
\left(3\sqrt{5-10y}\right)^{2}=\left(-y-11\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{5-10y}\right)^{2}=\left(-y-11\right)^{2}
Expand \left(3\sqrt{5-10y}\right)^{2}.
9\left(\sqrt{5-10y}\right)^{2}=\left(-y-11\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(5-10y\right)=\left(-y-11\right)^{2}
Calculate \sqrt{5-10y} to the power of 2 and get 5-10y.
45-90y=\left(-y-11\right)^{2}
Use the distributive property to multiply 9 by 5-10y.
45-90y=y^{2}+22y+121
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-y-11\right)^{2}.
45-90y-y^{2}=22y+121
Subtract y^{2} from both sides.
45-90y-y^{2}-22y=121
Subtract 22y from both sides.
45-112y-y^{2}=121
Combine -90y and -22y to get -112y.
45-112y-y^{2}-121=0
Subtract 121 from both sides.
-76-112y-y^{2}=0
Subtract 121 from 45 to get -76.
-y^{2}-112y-76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -112 for b, and -76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-112\right)±\sqrt{12544-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
Square -112.
y=\frac{-\left(-112\right)±\sqrt{12544+4\left(-76\right)}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-\left(-112\right)±\sqrt{12544-304}}{2\left(-1\right)}
Multiply 4 times -76.
y=\frac{-\left(-112\right)±\sqrt{12240}}{2\left(-1\right)}
Add 12544 to -304.
y=\frac{-\left(-112\right)±12\sqrt{85}}{2\left(-1\right)}
Take the square root of 12240.
y=\frac{112±12\sqrt{85}}{2\left(-1\right)}
The opposite of -112 is 112.
y=\frac{112±12\sqrt{85}}{-2}
Multiply 2 times -1.
y=\frac{12\sqrt{85}+112}{-2}
Now solve the equation y=\frac{112±12\sqrt{85}}{-2} when ± is plus. Add 112 to 12\sqrt{85}.
y=-6\sqrt{85}-56
Divide 112+12\sqrt{85} by -2.
y=\frac{112-12\sqrt{85}}{-2}
Now solve the equation y=\frac{112±12\sqrt{85}}{-2} when ± is minus. Subtract 12\sqrt{85} from 112.
y=6\sqrt{85}-56
Divide 112-12\sqrt{85} by -2.
y=-6\sqrt{85}-56 y=6\sqrt{85}-56
The equation is now solved.
3\sqrt{5-10\left(-6\sqrt{85}-56\right)}-6\sqrt{85}-56+11=0
Substitute -6\sqrt{85}-56 for y in the equation 3\sqrt{5-10y}+y+11=0.
0=0
Simplify. The value y=-6\sqrt{85}-56 satisfies the equation.
3\sqrt{5-10\left(6\sqrt{85}-56\right)}+6\sqrt{85}-56+11=0
Substitute 6\sqrt{85}-56 for y in the equation 3\sqrt{5-10y}+y+11=0.
12\times 85^{\frac{1}{2}}-90=0
Simplify. The value y=6\sqrt{85}-56 does not satisfy the equation.
y=-6\sqrt{85}-56
Equation 3\sqrt{5-10y}=-y-11 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}