Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(4\sqrt{3}-5\sqrt{27}\right)}{2}\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{3\left(4\sqrt{3}-5\times 3\sqrt{3}\right)}{2}\sqrt{3}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{3\left(4\sqrt{3}-15\sqrt{3}\right)}{2}\sqrt{3}
Multiply -5 and 3 to get -15.
\frac{3\left(-11\right)\sqrt{3}}{2}\sqrt{3}
Combine 4\sqrt{3} and -15\sqrt{3} to get -11\sqrt{3}.
\frac{-33\sqrt{3}}{2}\sqrt{3}
Multiply 3 and -11 to get -33.
\frac{-33\sqrt{3}\sqrt{3}}{2}
Express \frac{-33\sqrt{3}}{2}\sqrt{3} as a single fraction.
\frac{-33\times 3}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-99}{2}
Multiply -33 and 3 to get -99.
-\frac{99}{2}
Fraction \frac{-99}{2} can be rewritten as -\frac{99}{2} by extracting the negative sign.