Solve for x
x=5
Graph
Share
Copied to clipboard
60\left(\frac{x}{10}-\frac{1}{4}\right)+20x=100\left(\frac{x}{4}-\frac{1}{10}\right)
Multiply both sides of the equation by 20, the least common multiple of 10,4.
60\left(\frac{2x}{20}-\frac{5}{20}\right)+20x=100\left(\frac{x}{4}-\frac{1}{10}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 4 is 20. Multiply \frac{x}{10} times \frac{2}{2}. Multiply \frac{1}{4} times \frac{5}{5}.
60\times \frac{2x-5}{20}+20x=100\left(\frac{x}{4}-\frac{1}{10}\right)
Since \frac{2x}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
3\left(2x-5\right)+20x=100\left(\frac{x}{4}-\frac{1}{10}\right)
Cancel out 20, the greatest common factor in 60 and 20.
6x-15+20x=100\left(\frac{x}{4}-\frac{1}{10}\right)
Use the distributive property to multiply 3 by 2x-5.
26x-15=100\left(\frac{x}{4}-\frac{1}{10}\right)
Combine 6x and 20x to get 26x.
26x-15=100\left(\frac{5x}{20}-\frac{2}{20}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 10 is 20. Multiply \frac{x}{4} times \frac{5}{5}. Multiply \frac{1}{10} times \frac{2}{2}.
26x-15=100\times \frac{5x-2}{20}
Since \frac{5x}{20} and \frac{2}{20} have the same denominator, subtract them by subtracting their numerators.
26x-15=5\left(5x-2\right)
Cancel out 20, the greatest common factor in 100 and 20.
26x-15=25x-10
Use the distributive property to multiply 5 by 5x-2.
26x-15-25x=-10
Subtract 25x from both sides.
x-15=-10
Combine 26x and -25x to get x.
x=-10+15
Add 15 to both sides.
x=5
Add -10 and 15 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}