Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(\frac{x^{2}+9}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x}\right)
Factor x^{2}-9.
3\left(\frac{\left(x^{2}+9\right)x}{x\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x is x\left(x-3\right)\left(x+3\right). Multiply \frac{x^{2}+9}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
3\times \frac{\left(x^{2}+9\right)x-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x^{2}+9\right)x}{x\left(x-3\right)\left(x+3\right)} and \frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
3\times \frac{x^{3}+9x-x^{2}-3x+3x+9}{x\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x^{2}+9\right)x-\left(x-3\right)\left(x+3\right).
3\times \frac{x^{3}+9x-x^{2}+9}{x\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{3}+9x-x^{2}-3x+3x+9.
\frac{3\left(x^{3}+9x-x^{2}+9\right)}{x\left(x-3\right)\left(x+3\right)}
Express 3\times \frac{x^{3}+9x-x^{2}+9}{x\left(x-3\right)\left(x+3\right)} as a single fraction.
\frac{3x^{3}+27x-3x^{2}+27}{x\left(x-3\right)\left(x+3\right)}
Use the distributive property to multiply 3 by x^{3}+9x-x^{2}+9.
\frac{3x^{3}+27x-3x^{2}+27}{\left(x^{2}-3x\right)\left(x+3\right)}
Use the distributive property to multiply x by x-3.
\frac{3x^{3}+27x-3x^{2}+27}{x^{3}-9x}
Use the distributive property to multiply x^{2}-3x by x+3 and combine like terms.
3\left(\frac{x^{2}+9}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x}\right)
Factor x^{2}-9.
3\left(\frac{\left(x^{2}+9\right)x}{x\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and x is x\left(x-3\right)\left(x+3\right). Multiply \frac{x^{2}+9}{\left(x-3\right)\left(x+3\right)} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
3\times \frac{\left(x^{2}+9\right)x-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x^{2}+9\right)x}{x\left(x-3\right)\left(x+3\right)} and \frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
3\times \frac{x^{3}+9x-x^{2}-3x+3x+9}{x\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x^{2}+9\right)x-\left(x-3\right)\left(x+3\right).
3\times \frac{x^{3}+9x-x^{2}+9}{x\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{3}+9x-x^{2}-3x+3x+9.
\frac{3\left(x^{3}+9x-x^{2}+9\right)}{x\left(x-3\right)\left(x+3\right)}
Express 3\times \frac{x^{3}+9x-x^{2}+9}{x\left(x-3\right)\left(x+3\right)} as a single fraction.
\frac{3x^{3}+27x-3x^{2}+27}{x\left(x-3\right)\left(x+3\right)}
Use the distributive property to multiply 3 by x^{3}+9x-x^{2}+9.
\frac{3x^{3}+27x-3x^{2}+27}{\left(x^{2}-3x\right)\left(x+3\right)}
Use the distributive property to multiply x by x-3.
\frac{3x^{3}+27x-3x^{2}+27}{x^{3}-9x}
Use the distributive property to multiply x^{2}-3x by x+3 and combine like terms.