Solve for w
w=4
w=12
Share
Copied to clipboard
6\left(3\times \left(\frac{w}{6}\right)^{2}-8\times \frac{w}{6}\right)+24=0
Multiply both sides of the equation by 6.
6\left(3\times \frac{w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
To raise \frac{w}{6} to a power, raise both numerator and denominator to the power and then divide.
6\left(\frac{3w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Express 3\times \frac{w^{2}}{6^{2}} as a single fraction.
6\left(\frac{3w^{2}}{6^{2}}-\frac{8w}{6}\right)+24=0
Express 8\times \frac{w}{6} as a single fraction.
6\left(\frac{3w^{2}}{6^{2}}-\frac{4}{3}w\right)+24=0
Divide 8w by 6 to get \frac{4}{3}w.
6\times \frac{3w^{2}}{6^{2}}+6\left(-\frac{4}{3}w\right)+24=0
Use the distributive property to multiply 6 by \frac{3w^{2}}{6^{2}}-\frac{4}{3}w.
6\times \frac{3w^{2}}{36}+6\left(-\frac{4}{3}w\right)+24=0
Calculate 6 to the power of 2 and get 36.
6\times \frac{1}{12}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Divide 3w^{2} by 36 to get \frac{1}{12}w^{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Multiply 6 and \frac{1}{12} to get \frac{1}{2}.
\frac{1}{2}w^{2}-6\times \frac{4}{3}w+24=0
Multiply 6 and -1 to get -6.
\frac{1}{2}w^{2}-8w+24=0
Multiply -6 and \frac{4}{3} to get -8.
w=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times \frac{1}{2}\times 24}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -8 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-8\right)±\sqrt{64-4\times \frac{1}{2}\times 24}}{2\times \frac{1}{2}}
Square -8.
w=\frac{-\left(-8\right)±\sqrt{64-2\times 24}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
w=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times \frac{1}{2}}
Multiply -2 times 24.
w=\frac{-\left(-8\right)±\sqrt{16}}{2\times \frac{1}{2}}
Add 64 to -48.
w=\frac{-\left(-8\right)±4}{2\times \frac{1}{2}}
Take the square root of 16.
w=\frac{8±4}{2\times \frac{1}{2}}
The opposite of -8 is 8.
w=\frac{8±4}{1}
Multiply 2 times \frac{1}{2}.
w=\frac{12}{1}
Now solve the equation w=\frac{8±4}{1} when ± is plus. Add 8 to 4.
w=12
Divide 12 by 1.
w=\frac{4}{1}
Now solve the equation w=\frac{8±4}{1} when ± is minus. Subtract 4 from 8.
w=4
Divide 4 by 1.
w=12 w=4
The equation is now solved.
6\left(3\times \left(\frac{w}{6}\right)^{2}-8\times \frac{w}{6}\right)+24=0
Multiply both sides of the equation by 6.
6\left(3\times \frac{w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
To raise \frac{w}{6} to a power, raise both numerator and denominator to the power and then divide.
6\left(\frac{3w^{2}}{6^{2}}-8\times \frac{w}{6}\right)+24=0
Express 3\times \frac{w^{2}}{6^{2}} as a single fraction.
6\left(\frac{3w^{2}}{6^{2}}-\frac{8w}{6}\right)+24=0
Express 8\times \frac{w}{6} as a single fraction.
6\left(\frac{3w^{2}}{6^{2}}-\frac{4}{3}w\right)+24=0
Divide 8w by 6 to get \frac{4}{3}w.
6\times \frac{3w^{2}}{6^{2}}+6\left(-\frac{4}{3}w\right)+24=0
Use the distributive property to multiply 6 by \frac{3w^{2}}{6^{2}}-\frac{4}{3}w.
6\times \frac{3w^{2}}{36}+6\left(-\frac{4}{3}w\right)+24=0
Calculate 6 to the power of 2 and get 36.
6\times \frac{1}{12}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Divide 3w^{2} by 36 to get \frac{1}{12}w^{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)+24=0
Multiply 6 and \frac{1}{12} to get \frac{1}{2}.
\frac{1}{2}w^{2}+6\left(-\frac{4}{3}w\right)=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
\frac{1}{2}w^{2}-6\times \frac{4}{3}w=-24
Multiply 6 and -1 to get -6.
\frac{1}{2}w^{2}-8w=-24
Multiply -6 and \frac{4}{3} to get -8.
\frac{\frac{1}{2}w^{2}-8w}{\frac{1}{2}}=-\frac{24}{\frac{1}{2}}
Multiply both sides by 2.
w^{2}+\left(-\frac{8}{\frac{1}{2}}\right)w=-\frac{24}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
w^{2}-16w=-\frac{24}{\frac{1}{2}}
Divide -8 by \frac{1}{2} by multiplying -8 by the reciprocal of \frac{1}{2}.
w^{2}-16w=-48
Divide -24 by \frac{1}{2} by multiplying -24 by the reciprocal of \frac{1}{2}.
w^{2}-16w+\left(-8\right)^{2}=-48+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-16w+64=-48+64
Square -8.
w^{2}-16w+64=16
Add -48 to 64.
\left(w-8\right)^{2}=16
Factor w^{2}-16w+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-8\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
w-8=4 w-8=-4
Simplify.
w=12 w=4
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}