Evaluate
\frac{17}{8}=2.125
Factor
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Share
Copied to clipboard
3\left(\frac{1}{4}+\frac{2}{4}\right)-2\times \left(\frac{1}{4}\right)^{2}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
3\times \frac{1+2}{4}-2\times \left(\frac{1}{4}\right)^{2}
Since \frac{1}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
3\times \frac{3}{4}-2\times \left(\frac{1}{4}\right)^{2}
Add 1 and 2 to get 3.
\frac{3\times 3}{4}-2\times \left(\frac{1}{4}\right)^{2}
Express 3\times \frac{3}{4} as a single fraction.
\frac{9}{4}-2\times \left(\frac{1}{4}\right)^{2}
Multiply 3 and 3 to get 9.
\frac{9}{4}-2\times \frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{9}{4}-\frac{2}{16}
Multiply 2 and \frac{1}{16} to get \frac{2}{16}.
\frac{9}{4}-\frac{1}{8}
Reduce the fraction \frac{2}{16} to lowest terms by extracting and canceling out 2.
\frac{18}{8}-\frac{1}{8}
Least common multiple of 4 and 8 is 8. Convert \frac{9}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{18-1}{8}
Since \frac{18}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{8}
Subtract 1 from 18 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}