Solve for x
x = \frac{29}{4} = 7\frac{1}{4} = 7.25
Graph
Share
Copied to clipboard
3\times \frac{1}{2}x-3-\left(1+x\right)+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Use the distributive property to multiply 3 by \frac{1}{2}x-1.
\frac{3}{2}x-3-\left(1+x\right)+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{3}{2}x-3-1-x+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
To find the opposite of 1+x, find the opposite of each term.
\frac{3}{2}x-4-x+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Subtract 1 from -3 to get -4.
\frac{1}{2}x-4+\frac{1}{3}\left(2x+\frac{1}{2}\right)=\frac{1}{2}x+1
Combine \frac{3}{2}x and -x to get \frac{1}{2}x.
\frac{1}{2}x-4+\frac{1}{3}\times 2x+\frac{1}{3}\times \frac{1}{2}=\frac{1}{2}x+1
Use the distributive property to multiply \frac{1}{3} by 2x+\frac{1}{2}.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1}{3}\times \frac{1}{2}=\frac{1}{2}x+1
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1\times 1}{3\times 2}=\frac{1}{2}x+1
Multiply \frac{1}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x-4+\frac{2}{3}x+\frac{1}{6}=\frac{1}{2}x+1
Do the multiplications in the fraction \frac{1\times 1}{3\times 2}.
\frac{7}{6}x-4+\frac{1}{6}=\frac{1}{2}x+1
Combine \frac{1}{2}x and \frac{2}{3}x to get \frac{7}{6}x.
\frac{7}{6}x-\frac{24}{6}+\frac{1}{6}=\frac{1}{2}x+1
Convert -4 to fraction -\frac{24}{6}.
\frac{7}{6}x+\frac{-24+1}{6}=\frac{1}{2}x+1
Since -\frac{24}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}x-\frac{23}{6}=\frac{1}{2}x+1
Add -24 and 1 to get -23.
\frac{7}{6}x-\frac{23}{6}-\frac{1}{2}x=1
Subtract \frac{1}{2}x from both sides.
\frac{2}{3}x-\frac{23}{6}=1
Combine \frac{7}{6}x and -\frac{1}{2}x to get \frac{2}{3}x.
\frac{2}{3}x=1+\frac{23}{6}
Add \frac{23}{6} to both sides.
\frac{2}{3}x=\frac{6}{6}+\frac{23}{6}
Convert 1 to fraction \frac{6}{6}.
\frac{2}{3}x=\frac{6+23}{6}
Since \frac{6}{6} and \frac{23}{6} have the same denominator, add them by adding their numerators.
\frac{2}{3}x=\frac{29}{6}
Add 6 and 23 to get 29.
x=\frac{29}{6}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
x=\frac{29\times 3}{6\times 2}
Multiply \frac{29}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{87}{12}
Do the multiplications in the fraction \frac{29\times 3}{6\times 2}.
x=\frac{29}{4}
Reduce the fraction \frac{87}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}