Solve for k
k=\frac{\sqrt{5}}{10}\approx 0.223606798
k=-\frac{\sqrt{5}}{10}\approx -0.223606798
Share
Copied to clipboard
3\times \left(\frac{-16k}{4k^{2}+1}\right)^{2}\left(4k^{2}+1\right)=32
Multiply both sides of the equation by 4k^{2}+1.
3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
To raise \frac{-16k}{4k^{2}+1} to a power, raise both numerator and denominator to the power and then divide.
\frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right)=32
Express 3\times \frac{\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}} as a single fraction.
\frac{3\left(-16k\right)^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Express \frac{3\left(-16k\right)^{2}}{\left(4k^{2}+1\right)^{2}}\left(4k^{2}+1\right) as a single fraction.
\frac{3\left(-16\right)^{2}k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Expand \left(-16k\right)^{2}.
\frac{3\times 256k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Calculate -16 to the power of 2 and get 256.
\frac{768k^{2}\left(4k^{2}+1\right)}{\left(4k^{2}+1\right)^{2}}=32
Multiply 3 and 256 to get 768.
\frac{768k^{2}\left(4k^{2}+1\right)}{16\left(k^{2}\right)^{2}+8k^{2}+1}=32
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4k^{2}+1\right)^{2}.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}=32
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{768k^{2}\left(4k^{2}+1\right)}{16k^{4}+8k^{2}+1}-32=0
Subtract 32 from both sides.
\frac{3072k^{4}+768k^{2}}{16k^{4}+8k^{2}+1}-32=0
Use the distributive property to multiply 768k^{2} by 4k^{2}+1.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-32=0
Factor 16k^{4}+8k^{2}+1.
\frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}}-\frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 32 times \frac{\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}.
\frac{3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}}=0
Since \frac{3072k^{4}+768k^{2}}{\left(4k^{2}+1\right)^{2}} and \frac{32\left(4k^{2}+1\right)^{2}}{\left(4k^{2}+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
Do the multiplications in 3072k^{4}+768k^{2}-32\left(4k^{2}+1\right)^{2}.
\frac{2560k^{4}+512k^{2}-32}{\left(4k^{2}+1\right)^{2}}=0
Combine like terms in 3072k^{4}+768k^{2}-512k^{4}-256k^{2}-32.
2560k^{4}+512k^{2}-32=0
Multiply both sides of the equation by \left(4k^{2}+1\right)^{2}.
2560t^{2}+512t-32=0
Substitute t for k^{2}.
t=\frac{-512±\sqrt{512^{2}-4\times 2560\left(-32\right)}}{2\times 2560}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2560 for a, 512 for b, and -32 for c in the quadratic formula.
t=\frac{-512±768}{5120}
Do the calculations.
t=\frac{1}{20} t=-\frac{1}{4}
Solve the equation t=\frac{-512±768}{5120} when ± is plus and when ± is minus.
k=\frac{\sqrt{5}}{10} k=-\frac{\sqrt{5}}{10}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}