Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y^{2}-10y-8y-4
Divide 24 by 3 to get 8.
3y^{2}-18y-4
Combine -10y and -8y to get -18y.
factor(3y^{2}-10y-8y-4)
Divide 24 by 3 to get 8.
factor(3y^{2}-18y-4)
Combine -10y and -8y to get -18y.
3y^{2}-18y-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-18\right)±\sqrt{324-4\times 3\left(-4\right)}}{2\times 3}
Square -18.
y=\frac{-\left(-18\right)±\sqrt{324-12\left(-4\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-18\right)±\sqrt{324+48}}{2\times 3}
Multiply -12 times -4.
y=\frac{-\left(-18\right)±\sqrt{372}}{2\times 3}
Add 324 to 48.
y=\frac{-\left(-18\right)±2\sqrt{93}}{2\times 3}
Take the square root of 372.
y=\frac{18±2\sqrt{93}}{2\times 3}
The opposite of -18 is 18.
y=\frac{18±2\sqrt{93}}{6}
Multiply 2 times 3.
y=\frac{2\sqrt{93}+18}{6}
Now solve the equation y=\frac{18±2\sqrt{93}}{6} when ± is plus. Add 18 to 2\sqrt{93}.
y=\frac{\sqrt{93}}{3}+3
Divide 18+2\sqrt{93} by 6.
y=\frac{18-2\sqrt{93}}{6}
Now solve the equation y=\frac{18±2\sqrt{93}}{6} when ± is minus. Subtract 2\sqrt{93} from 18.
y=-\frac{\sqrt{93}}{3}+3
Divide 18-2\sqrt{93} by 6.
3y^{2}-18y-4=3\left(y-\left(\frac{\sqrt{93}}{3}+3\right)\right)\left(y-\left(-\frac{\sqrt{93}}{3}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3+\frac{\sqrt{93}}{3} for x_{1} and 3-\frac{\sqrt{93}}{3} for x_{2}.